1
|
Park JH, Oh JE, Kim N, Kwak YL. Dexmedetomidine alleviates CoCl2-induced hypoxic cellular damage in INS-1 cells by regulating autophagy. Korean J Anesthesiol 2024; 77:623-634. [PMID: 39355897 PMCID: PMC11637589 DOI: 10.4097/kja.24457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is inevitable during the perioperative period. The pancreas is susceptible to I/R injury. Autophagy, a self-digestion process, is upregulated during I/R injury and strongly induced by hypoxia. This study aims to determine whether dexmedetomidine can decrease pancreatic β-cell damage by regulating autophagy under hypoxia. METHODS INS-1 rat insulinoma cells were cultured in dexmedetomidine before being exposed to cobalt chloride (CoCl2)-induced hypoxia. Cell viability and the expression of autophagy-related proteins (light chain 3B [LC3B]-II, p62, and ATGs) were assessed. The expression of apoptosis-related proteins (BCL-2 and P-BAD) were also evaluated. CoCl2-treated INS-1 cells were pretreated with the autophagosome formation inhibitor, 3-methyladenine (3-MA), to compare its effects with those of dexmedetomidine. Bafilomycin-A1 (Baf-A1) that inhibits autophagosome degradation was used to confirm the changes in autophagosome formation induced by dexmedetomidine. RESULTS Dexmedetomidine attenuated the increased expression of autophagic proteins (LC3B-II, p62, and ATGs) and reversed the CoCl2-induced reduction in the proliferation of INS-1 cells after hypoxia. Dexmedetomidine also alleviated the decreased expression of the anti-apoptotic protein (BCL-2) and the increased expression of apoptotic protein (BAX). Dexmedetomidine reduces the activation of autophagy through inhibiting autophagosome formation, as confirmed by a decrease in LC3B-II/I ratio, a marker of autophagosome formation, in LC3B turnover assay combined with Baf-A1. CONCLUSIONS Dexmedetomidine alleviates the degree of cellular damage in INS-1 cells against CoCl2-induced hypoxia by regulating autophagosome formation. These results provide a basis for further studies to confirm these effects in clinical practice.
Collapse
Affiliation(s)
- Jin Ha Park
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Eun Oh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Namo Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Lan Kwak
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Han GJ, Min XZ, Ma SS, Ding C, Wang XQ. Xuesaitong Combined with Dexmedetomidine Improves Cerebral Ischemia-Reperfusion Injury in Rats by Activating Keap1/Nrf2 Signaling and Mitophagy in Hippocampal Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5126042. [PMID: 36531207 PMCID: PMC9750788 DOI: 10.1155/2022/5126042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 08/02/2024]
Abstract
Ischemic stroke is the most common type of cerebrovascular disease with high mortality and poor prognosis, and cerebral ischemia-reperfusion (CI/R) injury is the main murderer. Here, we attempted to explore the effects and mechanism of Xuesaitong (XST) combined with dexmedetomidine (Dex) on CI/R injury in rats. First, a rat model of CI/R injury was constructed via the middle cerebral artery occlusion (MCAO) method and treated with XST and Dex alone or in combination. Then, on the 5th and 10th days of treatment, the neurological impairment was assessed using the modified neurological severity scores (mNSS), the 8-arm radial maze test (8ARMT), novel object recognition test (NORT), and fear conditioning test (FCT). H&E staining was performed to observe the pathological changes of the hippocampus. ELISA and related kits were used to assess the monoamine neurotransmitters and antioxidant enzyme activities in the hippocampus. The ATP, mitochondrial membrane potential levels, and qRT-PCR of genes related to mitochondrial function were determined to assess mitochondrial functions in the hippocampus and western blot to determine Keap1/Nrf2 signaling pathway and mitophagy-related protein expression. The results showed that XST combined with Dex significantly reduced mNSS, improved spatial memory and learning deficits, and enhanced fear memory and cognitive memory ability in CI/R rats, which was superior to single-drug treatment. Moreover, XST combined with Dex treatment improved hippocampal histopathological damage; significantly increased the levels of monoamine neurotransmitters, neurotrophic factors, ATP, and mitochondrial membrane potential; and upregulated the activities of antioxidant enzymes and the expression of mitophagy-related proteins in the hippocampus of CI/R rats. XST combined with Dex treatment also activated the Keap1/Nrf2 signaling and upregulated the protein expression of downstream antioxidant enzymes HO-1 and NQ. Altogether, this study showed that a combination of XST and Dex could activate the Keap1/Nrf2 signaling and mitophagy to protect rats from CI/R-related neurological impairment.
Collapse
Affiliation(s)
- Guo-Jie Han
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| | - Xiang-Zhen Min
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| | - Shuang-Shuang Ma
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| | - Chuan Ding
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| | - Xiu-Qin Wang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| |
Collapse
|
3
|
Zhao S, Wu W, Lin X, Shen M, Yang Z, Yu S, Luo Y. Protective effects of dexmedetomidine in vital organ injury: crucial roles of autophagy. Cell Mol Biol Lett 2022; 27:34. [PMID: 35508984 PMCID: PMC9066865 DOI: 10.1186/s11658-022-00335-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Vital organ injury is one of the leading causes of global deaths. Accumulating studies have demonstrated that dexmedetomidine (DEX) has an outstanding protective effect on multiple organs for its antiinflammatory and antiapoptotic properties, while the underlying molecular mechanism is not clearly understood. Autophagy, an adaptive catabolic process, has been found to play a crucial role in the organ-protective effects of DEX. Herein, we present a first attempt to summarize all the evidence on the proposed roles of autophagy in the action of DEX protecting against vital organ injuries via a comprehensive review. We found that most of the relevant studies (17/24, 71%) demonstrated that the modulation of autophagy was inhibited under the treatment of DEX on vital organ injuries (e.g. brain, heart, kidney, and lung), but several studies suggested that the level of autophagy was dramatically increased after administration of DEX. Albeit not fully elucidated, the underlying mechanisms governing the roles of autophagy involve the antiapoptotic properties, inhibiting inflammatory response, removing damaged mitochondria, and reducing oxidative stress, which might be facilitated by the interaction with multiple associated genes (i.e., hypoxia inducible factor-1α, p62, caspase-3, heat shock 70 kDa protein, and microRNAs) and signaling cascades (i.e., mammalian target of rapamycin, nuclear factor-kappa B, and c-Jun N-terminal kinases pathway). The authors conclude that DEX hints at a promising strategy in the management of vital organ injuries, while autophagy is crucially involved in the protective effect of DEX.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Maoming, 525000, Guangdong, China
| | - Xuezheng Lin
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Zhenyu Yang
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Sicong Yu
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Yu Luo
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China.
| |
Collapse
|
4
|
Dexmedetomidine attenuates motor deficits via restoring the function of neurons in the nigrostriatal circuit in Parkinson's disease model mice. Eur J Pharmacol 2022; 920:174806. [PMID: 35150656 DOI: 10.1016/j.ejphar.2022.174806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive degeneration in nigrostriatal dopamine pathway that is essential to control motor functions. Dexmedetomidine (DEX), a sedative and analgesic drug, is often used in patients with PD undergoing surgery. Although DEX seems to have promising future applications in neuroprotection, whether and how DEX alter the function of nigrostriatal circuit and its roles on motor deficits in PD remain unclear. Here we report that DEX attenuated motor deficits in a dose-dependent manner and protected the degeneration of dopaminergic neurons in MPTP-induced PD model mice. The DEX acted on the neurons in the nigrostriatal circuits, including activation of dopaminergic neurons and the reduction of the excitabilities of striatal neurons via dopamine D2 receptors. We further found that DEX prevented the increase in glutamatergic transmission of cholinergic interneurons (CINs) to alleviate motor dysfunction. It also decreased the intrinsic excitability and glutamatergic transmission of striatal D2 medium spiny neurons (D2-MSNs). Finally, D2 receptor antagonists prevented the restoration of DEX on motor deficits. These results demonstrate that DEX, a neuroprotective drug, restores the function of nigrostriatal neurons and improves the motor deficits, providing a potential neural mechanism of the effects of anesthetic drugs on PD progression.
Collapse
|
5
|
Li Y, Qu M, Xing F, Li H, Cheng D, Xing N, Zhang W. The Protective Mechanism of Dexmedetomidine in Regulating Atg14L-Beclin1-Vps34 Complex Against Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Transl Res 2021; 14:1063-1074. [PMID: 33914271 DOI: 10.1007/s12265-021-10125-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
The blood flow restoration of ischemic tissues causes myocardial injury. Dexmedetomidine (Dex) protects multi-organs against ischemia/reperfusion (I/R) injury. This study investigated the protective mechanism of Dex post-treatment in myocardial I/R injury. The rat model of myocardial I/R was established. The effects of Dex post-treatment on cardiac function and autophagy flow were observed. Dex attenuated myocardial I/R injury and reduced I/R-induced autophagy in rats. Dex weakened the interactions between Beclin1 and Vps34 and Beclin1 and Atg14L, thus downregulating Vps34 kinase activity. In vitro, the cardiomyocytes subjected to oxygen glucose deprivation/reoxygenation were treated with Dex and PI3K inhibitor LY294002. LY294002 attenuated the myocardial protective effect of DEX, indicating that Dex protected against cardiac I/R by activating the PI3K/Akt pathway. In conclusion, Dex upregulated the phosphorylation of Beclin1 at S295 site by activating the PI3K/Akt pathway and reduced the interactions of Atg14L-Beclin1-Vps34 complex, thus inhibiting autophagy and protecting against myocardial I/R injury.
Collapse
Affiliation(s)
- Yanna Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Mingcui Qu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Huixin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Dan Cheng
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China.
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Unchiti K, Leurcharusmee P, Samerchua A, Pipanmekaporn T, Chattipakorn N, Chattipakorn SC. The potential role of dexmedetomidine on neuroprotection and its possible mechanisms: Evidence from in vitro and in vivo studies. Eur J Neurosci 2021; 54:7006-7047. [PMID: 34561931 DOI: 10.1111/ejn.15474] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Neurological disorders following brain injuries and neurodegeneration are on the rise worldwide and cause disability and suffering in patients. It is crucial to explore novel neuroprotectants. Dexmedetomidine, a selective α2-adrenoceptor agonist, is commonly used for anxiolysis, sedation and analgesia in clinical anaesthesia and critical care. Recent studies have shown that dexmedetomidine exerts protective effects on multiple organs. This review summarized and discussed the current neuroprotective effects of dexmedetomidine, as well as the underlying mechanisms. In preclinical studies, dexmedetomidine reduced neuronal injury and improved functional outcomes in several models, including hypoxia-induced neuronal injury, ischaemic-reperfusion injury, intracerebral haemorrhage, post-traumatic brain injury, anaesthetic-induced neuronal injury, substance-induced neuronal injury, neuroinflammation, epilepsy and neurodegeneration. Several mechanisms are associated with the neuroprotective function of dexmedetomidine, including neurotransmitter regulation, inflammatory response, oxidative stress, apoptotic pathway, autophagy, mitochondrial function and other cell signalling pathways. In summary, dexmedetomidine has the potential to be a novel neuroprotective agent for a wide range of neurological disorders.
Collapse
Affiliation(s)
- Kantarakorn Unchiti
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prangmalee Leurcharusmee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Samerchua
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tanyong Pipanmekaporn
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Mitochondrial Quality Control in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2021; 58:5253-5271. [PMID: 34275087 DOI: 10.1007/s12035-021-02494-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/12/2021] [Indexed: 12/27/2022]
Abstract
Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.
Collapse
|
8
|
Dual Role of Mitophagy in Cardiovascular Diseases. J Cardiovasc Pharmacol 2021; 78:e30-e39. [PMID: 34232224 DOI: 10.1097/fjc.0000000000001046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 01/13/2023]
Abstract
ABSTRACT Mitophagy is involved in the development of various cardiovascular diseases, such as atherosclerosis, heart failure, myocardial ischemia/reperfusion injury, and hypertension. Mitophagy is essential for maintaining intracellular homeostasis and physiological function in most cardiovascular origin cells, such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells. Mitophagy is crucial to ensuring energy supply by selectively removing dysfunctional mitochondria, maintaining a balance in the number of mitochondria in cells, ensuring the integrity of mitochondrial structure and function, maintaining homeostasis, and promoting cell survival. Substantial research has indicated a "dual" effect of mitophagy on cardiac function, with inadequate and increased mitochondrial degradation both likely to influence the progression of cardiovascular disease. This review summarizes the main regulatory pathways of mitophagy and emphasizes that an appropriate amount of mitophagy can prevent endothelial cell injury, vascular smooth muscle cell proliferation, macrophage polarization, and cardiomyocyte apoptosis, avoiding further progression of cardiovascular diseases.
Collapse
|
9
|
Deng M, Zhong X, Gao Z, Jiang W, Peng L, Cao Y, Zhou Z, Huang L. Dynamic changes in Beclin-1, LC3B and p62 at various time points in mice with temporary middle cerebral artery occlusion and reperfusion (tMCAO). Brain Res Bull 2021; 173:124-131. [PMID: 33974897 DOI: 10.1016/j.brainresbull.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Ischaemic stroke is attributable to cerebrovascular disease and is associated with high morbidity, disability, mortality and recurrence. Autophagy is a critical mediator and plays dual roles in ischaemic stroke. Autophagy can protect against ischaemic brain injury during the early stage of ischaemic stroke, while excessive autophagy can induce apoptosis and exacerbate brain injury. However, the time-dependent variations in autophagy in ischaemic stroke are unknown. C57BL/6 mice were used to establish a model of temporary middle cerebral artery occlusion and reperfusion (tMCAO). The neurological functional scores and infarct volumes were determined at 1 d, 3 d, 5 d, and 7 d after modelling. The levels of Beclin-1, LC3B, p62, GFAP, TNF-α, IL-6, IL-10, ROS, 4-HNE and 8-OHDG were measured by ELISA, RT-PCR, immunofluorescence analysis and western blotting. The morphology of autophagosomes of ischaemic penumbra was observed by transmission electron microscopy (TEM). Beclin-1, LC3B, ROS, 4-HNE, 8-OHDG, GFAP, TNF-α and IL-6 levels increased (P < 0.01), while p62 and IL-10 levels decreased (P < 0.01) after tMCAO compared to those in the sham group. Beclin-1, LC3B, ROS, 4-HNE, 8-OHDG, GFAP, TNF-α and IL-6 levels were reduced in tMCAO mice at 3 d, 5 d and 7 d (P<0.05), and p62 and IL-10 levels were enhanced (P < 0.05) compared to those at 1 d. In addition, Beclin-1 positively correlated with LC3B, GFAP, TNF-α, IL-6, ROS, 4-HNE and 8-OHDG (P < 0.05), and Beclin-1 negatively correlated with p62 and IL-10 (P < 0.05). The number of autophagosomes was consistent with the expression of autophagy marker proteins, both showing a steady decrease. In summary, autophagy was activated within 7 d of tMCAO induction, and it strengthened at 1 d and then weakened steadily from 3 to 7 d. In addition, this study verified that autophagy positively correlated with the inflammatory response and oxidative stress at 7 d after tMCAO.
Collapse
Affiliation(s)
- Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Xiaoqin Zhong
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China; The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhijie Gao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Wen Jiang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Lilin Peng
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Yucheng Cao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Zhongliu Zhou
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China.
| | - Liping Huang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China.
| |
Collapse
|
10
|
Lv H, Li Y, Cheng Q, Chen J, Chen W. Neuroprotective Effects Against Cerebral Ischemic Injury Exerted by Dexmedetomidine via the HDAC5/NPAS4/MDM2/PSD-95 Axis. Mol Neurobiol 2021; 58:1990-2004. [PMID: 33411316 DOI: 10.1007/s12035-020-02223-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/19/2020] [Indexed: 01/16/2023]
Abstract
Numerous evidences have highlighted the efficient role of dexmedetomidine (DEX) in multi-organ protection. In the present study, the neuroprotective role of DEX on cerebral ischemic injury and the underlining signaling mechanisms were explored. In order to simulate cerebral ischemic injury, we performed middle cerebral artery occlusion in mice and oxygen-glucose deprivation in neurons. Immunohistochemistry, Western blot analysis, and RT-qPCR were used to examine expression of HDAC5, NPAS4, MDM2, and PSD-95 in hippocampus tissues of MCAO mice and OGD-treated neurons. MCAO mice received treatment with DEX and sh-PSD-95, followed by neurological function evaluation, behavioral test, infarct volume detection by TTC staining, and apoptosis by TUNEL staining. Additionally, gain- and loss-of-function approaches were conducted in OGD-treated neuron after DEX treatment. Cell viability and apoptosis were assessed with the application of CCK-8 and flow cytometry. The interaction between MDM2 and PSD-95 was evaluated using Co-IP assay, followed by ubiquitination of PSD-95 detection. As per the results, HDAC5 and MDM2 were abundantly expressed, while NPAS4 and PSD-95 were poorly expressed in hippocampus tissues of MCAO mice and OGD-treated neurons. DEX elevated viability, and reduced LDH leakage rate and apoptosis rate of OGD-treated neurons, which was reversed following the overexpression of HDAC5. Moreover, HDAC5 augmented MDM2 expression via NPAS4 inhibition. MDM2 induced PSD-95 ubiquitination and degradation. In MCAO mice, DEX improved neurological function and behaviors and decreased infarct volume and apoptosis, which was negated as a result of PSD-95 silencing. DEX plays a neuroprotective role against cerebral ischemic injury by disrupting MDM2-induced PSD-95 ubiquitination and degradation via HDAC5 and NPAS4.
Collapse
Affiliation(s)
- Hu Lv
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ying Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Qian Cheng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.
| | - Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
11
|
Perioperative Dexmedetomidine attenuates brain ischemia reperfusion injury possibly via up-regulation of astrocyte Connexin 43. BMC Anesthesiol 2020; 20:299. [PMID: 33287729 PMCID: PMC7722427 DOI: 10.1186/s12871-020-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Astrocyte Connexin 43 (Cx43) is essential for the trophic and protective support of neurons during brain ischemia reperfusion (I/R) injury. It is believed that dexmedetomidine participates in Cx43-mediated effects. However, its mechanisms remained unclear. This study aims to address the relationship and regulation among them. METHODS Adult male Sprague-Dawley rats were allocated to the 90-min right middle cerebral arterial occlusion with or without dexmedetomidine pretreatment (5 μg/kg). Neurological functions were evaluated and brain lesions, as well as inflammatory factors (IL-1β, IL-6, TNF-α), were assessed. Ischemic penumbral cortex was harvested to determine the expression of astrocyte Cx43. Primary astrocytes were cultured to evaluate the effect of dexmedetomidine on Cx43 after oxygen-glucose deprivation. RESULTS Dexmedetomidine pretreatment attenuated neurological injury, brain lesions and expression of inflammatory factors (IL-1β, IL-6, TNF-α) after brain ischemia (P < 0.05). Astrocyte Cx43 was down-regulated by brain I/R injury, both in vivo and in vitro, which were reversed by dexmedetomidine (P < 0.05). This effect was mediated by the phosphorylation of Akt and GSK-3β. Further studies with LY294002 (PI3K inhibitor) or SB216763 (GSK-3β inhibitor) confirmed the effect of dexmedetomidine on astrocyte Cx43. CONCLUSIONS Perioperative dexmedetomidine administration attenuates neurological injury after brain I/R injury, possibly through up-regulation of astrocyte Cx43. Activation of PI3K-Akt-GSK-3β pathway might contribute to this protective effect.
Collapse
|