1
|
Ahmad P, Alvi SS, Waiz M, Khan MS, Ahmad S, Khan MS. Naturally occurring organosulfur compounds effectively inhibits PCSK-9 activity and restrict PCSK-9-LDL-receptor interaction via in-silico and in-vitro approach. Nat Prod Res 2024; 38:3924-3933. [PMID: 37842787 DOI: 10.1080/14786419.2023.2269465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
The present study intended to divulge the potential role of garlic-derived organosulfur compounds (OSCs) in targeting PCSK-9 and averting its interaction with the EGF-A portion of LDL-R via in-vitro and in-silico analysis. Our in-silico screening data showed that 3-(Propylsulfinyl)-L-alanine (PSA), S-Ethyl-L-cysteine (SEC), alliin, and S-Allyl-L-cysteine (SAC) exhibited higher binding energy (-7.05, -7.00, -6.65, and -6.31 Kcal/mol, respectively) against PCSK-9, among other selected OSCs. Further, the protein-protein interaction study of PCSK-9-OSCs-complex with EGF-A demonstrated a similar binding pattern with E-total values ranging from -430.01 to -405.6 Kcal/mol. These results were further validated via in-vitro analysis which showed that SEC, SAC, and diallyl trisulphide (DAT) exhibited the lowest IC50 values of 4.70, 5.26, and 5.29 µg/mL, respectively. In conclusion, the presented data illustrated that SEC, SAC, and DAT were the best inhibitors of PCSK-9 activity and may have the potential to improve the LDL-R function and lower the circulatory LDL-C level.
Collapse
Affiliation(s)
- Parvej Ahmad
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Sahir S Alvi
- Department of Immunology and Microbiology, South TX Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Bangash AA, Alvi SS, Bangash MA, Ahsan H, Khan S, Shareef R, Villanueva G, Bansal D, Ahmad M, Kim DJ, Chauhan SC, Hafeez BB. Honey Targets Ribosome Biogenesis Components to Suppress the Growth of Human Pancreatic Cancer Cells. Cancers (Basel) 2024; 16:3431. [PMID: 39410048 PMCID: PMC11475701 DOI: 10.3390/cancers16193431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic cancer (PanCa) is one of the deadliest cancers, with limited therapeutic response. Various molecular oncogenic events, including dysregulation of ribosome biogenesis, are linked to the induction, progression, and metastasis of PanCa. Thus, the discovery of new therapies suppressing these oncogenic events and ribosome biogenesis could be a novel therapeutic approach for the prevention and treatment of PanCa. The current study was designed to investigate the anti-cancer effect of honey against PanCa. Our results indicated that honey markedly inhibited the growth and invasive characteristics of pancreatic cancer cells by suppressing the mRNA expression and protein levels of key components of ribosome biogenesis, including RNA Pol-I subunits (RPA194 and RPA135) along with its transcriptional regulators, i.e., UBTF and c-Myc. Honey also induced nucleolar stress in PanCa cells by reducing the expression of various nucleolar proteins (NCL, FBL, and NPM). Honey-mediated regulation on ribosome biogenesis components and nucleolar organization-associated proteins significantly arrested the cell cycle in the G2M phase and induced apoptosis in PanCa cells. These results, for the first time, demonstrated that honey, being a natural remedy, has the potential to induce apoptosis and inhibit the growth and metastatic phenotypes of PanCa by targeting ribosome biogenesis.
Collapse
Affiliation(s)
- Aun Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sahir Sultan Alvi
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Muhammad Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Haider Ahsan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shiza Khan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rida Shareef
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Georgina Villanueva
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Divyam Bansal
- Department of Kinesiology, Rice University, Houston, TX 77251, USA;
| | - Mudassier Ahmad
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Dae Joon Kim
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Bilal Bin Hafeez
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
3
|
Ahmad P, Shah A, Waiz M, Chaturvedi CP, Alvi SS, Khan MS. Organosulfur Compounds, S-Allyl-L-Cysteine and S-Ethyl-L-Cysteine, Target PCSK-9/LDL-R-Axis to Ameliorate Cardiovascular, Hepatic, and Metabolic Changes in High Carbohydrate and High Fat Diet-Induced Metabolic Syndrome in Rats. Phytother Res 2024. [PMID: 39225240 DOI: 10.1002/ptr.8323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Metabolic syndrome (MetS) is an ever-evolving set of diseases that poses a serious health risk in many countries worldwide. Existing evidence illustrates that individuals with MetS have a 30%-40% higher chance of acquiring type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), or both. This study was undertaken to uncover the regulatory role of natural organosulfur compounds (OSCs), S-allyl-L-cysteine (SAC), and S-ethyl-L-cysteine (SEC), in targeting high carbohydrate high fat (HCHF)-diet-induced MetS-associated risk management. Our findings suggested that SAC and SEC ameliorated HCHF-diet-induced diabetic profiles, plasma lipid and lipoprotein level, liver function, oxidative-stress, inflammatory cytokines, and chemokines including monocyte chemoattractant protein-1 (MCP-1), lipid peroxidation, plasma proprotein convertase subtilisin/kexin type-9 (PCSK-9), and high-sensitivity C-reactive protein (hs-CRP). Moreover, the assessment of the hepatic mRNA expression of the key genes involved in cholesterol homeostasis depicted that SAC and SEC downregulated the PCSK-9 mRNA expression via targeting the expression of HNF-1α, a transcriptional activator of PCSK-9. On the other hand, the LDL-receptor (LDL-R) expression was upregulated through the activation of its transcriptional regulator sterol regulatory element binding protein-2 (SREBP-2). In addition, the activity and the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme-A reductases (HMG-R) and peroxisome proliferator-activated receptors (PPARs) were also improved by the treatment of SAC and SEC. We concluded that SAC and SEC can protect against MetS via improving the lipid and lipoprotein content, glycemic indices, hepatic function, targeting the inflammatory cascades, and oxidative imbalance, regulation of the mRNA expression of PCSK-9, LDL-R, SREBP-2, HNF-1α, PPARs, and inflammatory biomarkers.
Collapse
Affiliation(s)
- Parvej Ahmad
- Integral Information & Research Center (IIRC-5), Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Arunim Shah
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Mohd Waiz
- Integral Information & Research Center (IIRC-5), Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Chandra P Chaturvedi
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Integral Information & Research Center (IIRC-5), Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
- Department of Medicine and Oncology ISU, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - M Salman Khan
- Integral Information & Research Center (IIRC-5), Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Ye W, Wang J, Little PJ, Zou J, Zheng Z, Lu J, Yin Y, Liu H, Zhang D, Liu P, Xu S, Ye W, Liu Z. Anti-atherosclerotic effects and molecular targets of ginkgolide B from Ginkgo biloba. Acta Pharm Sin B 2024; 14:1-19. [PMID: 38239238 PMCID: PMC10792990 DOI: 10.1016/j.apsb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba , a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba , can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
Collapse
Affiliation(s)
- Weile Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya QLD 4575, Australia
| | - Jiami Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanjun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Institute of Endocrine and Metabolic Diseases, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhiping Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Wang J, Li J, Hu M. Mechanism analysis of Buyang Huanwu decoction in treating atherosclerosis based on network pharmacology and in vitro experiments. Chem Biol Drug Des 2024; 103:e14447. [PMID: 38230788 DOI: 10.1111/cbdd.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024]
Abstract
Atherosclerosis (AS) is one of the main risk factors of ischemic cardiovascular and cerebrovascular diseases. Buyang Huanwu decoction (BYHWT) is a classic Chinese medicine prescription that is used for treating AS. However, the underlying pharmacological mechanism remains unclear. This study aims to clarify the molecular mechanism of BYHWT in treatment of AS through network pharmacology and in vitro experiments. Molecular structure information and targets of core components of BYHWT were obtained from PubChem and UniProtKB databases. Genes involved in AS were obtained from DisGeNet, GeneCards and OMIM databases. The core targets of BYHWT in AS treatment were identified by protein-protein interaction (PPI) network analysis with STRING platform, and analyzed by gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the core targets and the bioactive ingredients. HUVEC viability, inflammatory response and mRNA expression levels of core target genes were evaluated by cell counting kit 8 assay, enzyme-linked immunosorbent assay (ELISA) and qRT-PCR. A total of 60 candidate compounds and 325 predicted target genes were screened. PPI network analysis suggested that TP53, SRC, STAT3, and AKT1 may be the core targets. BYHWT in AS treatment was associated with 46 signaling pathways. GA120, baicalein, and 3,9-di-o-methylnissolin had good binding affinity with core target proteins. Baicalein treatment could significantly promoted the viability and repress the inflammatory response of HUVEC cells stimulated by ox-LDL. In addition, Baicalein can regulate the expression of core targets including AKT1, MAPK1, PIK3CA, JUN, TP53, SRC, EGFR, and ESR1. In conclusion, BYHWT and its main bioactive component baicalein, inhibit inflammatory response and modulate multiple downstream genes of endothelial cells, and show good potential to block the progression of AS and cardiovascular/cerebrovascular diseases.
Collapse
Affiliation(s)
- Jing Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajun Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Hu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Waiz M, Alvi SS, Khan MS. Association of circulatory PCSK-9 with biomarkers of redox imbalance and inflammatory cascades in the prognosis of diabetes and associated complications: a pilot study in the Indian population. Free Radic Res 2023; 57:294-307. [PMID: 37459623 DOI: 10.1080/10715762.2023.2237180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
AbstractsBesides the profound role of proprotein convertase subtilisin/kexin type-9 (PCSK-9) in LDL-C regulation, its association with other metabolic complications cannot be disregarded. The co-existence of redox imbalance and inflammatory cascades has greatly reflected the etiology of hyperglycemia. Therefore, we studied the association of PCSK-9 with inflammation and oxidative stress biomarkers to predict its role in the prognosis of diabetes and its associated complications in the Indian population. This pilot study examined a total of n = 187 subjects: healthy controls (HC; n = 50), diabetic without complication (T2DM; n = 49), diabetic nephropathy (T2DM-N; n = 43), and diabetic dyslipidemic (T2DM-DL; n = 45) subjects. The relationship between circulatory PCSK-9 levels and inflammation and redox imbalance biomarkers has been explored. The significant positive association of elevated PCSK-9 level with the inflammatory (i.e. IL-1β, IL-6, TNF-α, and CRP) and oxidative stress marker (i.e. XOD, CD, LOOH, and MDA) was observed in T2DM-N and T2DM-DL subjects. Whereas single regression analysis depicted that PCSK-9 was inversely associated with the FRAP and PON-1 in T2DM-N and T2DM-DL subjects. Furthermore, no significant correlation was detected in both T2DM and HC subjects. We found a significant relationship between these prognostic biomarkers with an elevated level of PCSK-9 in T2DM-N and T2DM-DL subjects. PCSK-9 is a nontraditional biomarker in diabetes that may help identify patients at risk of developing secondary complications of diabetes in the Indian population. However, further large cohort validation studies are needed.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P, India
- Department of Immunology and Microbiology, South TX Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P, India
| |
Collapse
|
7
|
Wiklund L, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Nozari A, Feng L, Sharma HS. TiO 2-Nanowired Delivery of Chinese Extract of Ginkgo biloba EGb-761 and Bilobalide BN-52021 Enhanced Neuroprotective Effects of Cerebrolysin Following Spinal Cord Injury at Cold Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:353-384. [PMID: 37480466 DOI: 10.1007/978-3-031-32997-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Hari Shanker Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Zulkapli R, Yusof MYPM, Abd Muid S, Wang SM, Firus Khan AY, Nawawi H. A Systematic Review on Attenuation of PCSK9 in Relation to Atherogenesis Biomarkers Associated with Natural Products or Plant Bioactive Compounds in In Vitro Studies: A Critique on the Quality and Imprecision of Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12878. [PMID: 36232177 PMCID: PMC9566180 DOI: 10.3390/ijerph191912878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
A systematic review was performed to identify all the related publications describing PCSK9 and atherogenesis biomarkers attenuation associated with a natural product and plant bioactive compounds in in vitro studies. This review emphasized the imprecision and quality of the included research rather than the detailed reporting of the results. Literature searches were conducted in Scopus, PubMed, and Science Direct from 2003 until 2021, following the Cochrane handbook. The screening of titles, abstracts, and full papers was performed by two independent reviewers, followed by data extraction and validity. Study quality and validity were assessed using the Imprecision Tool, Model, and Marker Validity Assessment that has been developed for basic science studies. A total of 403 articles were identified and 31 of those that met the inclusion criteria were selected. 13 different atherogenesis biomarkers in relation to PCSK9 were found, and the most studied biomarkers are LDLR, SREBP, and HNF1α. In terms of quality, our review suggests that the basic science study in investigating atherogenesis biomarkers is deficient in terms of imprecision and validity.
Collapse
Affiliation(s)
- Rahayu Zulkapli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Dentistry, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Mohd Yusmiaidil Putera Mohd Yusof
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Dentistry, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Suhaila Abd Muid
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Seok Mui Wang
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Al’Aina Yuhainis Firus Khan
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
9
|
Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI JOURNAL 2022; 21:47-76. [PMID: 35221836 PMCID: PMC8859648 DOI: 10.17179/excli2021-4453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands amongst the leading causes of mortality worldwide and has attracted the attention of world's leading pharmaceutical companies in order to tackle such mortalities. The low-density lipoprotein-cholesterol (LDL-C) is considered the most prominent biomarker for the assessment of ASCVD risk. Distinct inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-R), the chief hepatic cholesterogenic enzyme, are being used since last seven decades to manage hypercholesterolemia. On the other hand, discovery and the association of proprotein convertase subtilisin/kexin type-9 (PCSK-9) with increased ASCVD risk have established PCSK-9 as a novel therapeutic target in cardiovascular medicine. PCSK-9 is well reckoned to facilitate the LDL-receptor (LDL-R) degradation and compromised LDL-C clearance leading to the arterial atherosclerotic plaque formation. The currently available HMG-R inhibitors (statins) and PCSK-9 inhibitors (siRNA, anti-sense oligonucleotides, and monoclonal antibodies) have shown great promises in achieving LDL-C lowering goals, however, their life long prescriptions have raised significant concerns. These deficits associated with the synthetic HMG-R and PCSK-9 inhibitors called for the discovery of alternative therapeutic candidates with potential dual HMG-R and PCSK-9 inhibitory activities from natural origins. Therefore, this report firstly describes the mechanistic insights into the cholesterol homeostasis through HMG-R, PCSK-9, and LDL-R functionality and then compiles the pharmacological effects of natural secondary metabolites with special emphasis on their dual HMG-R and PCSK-9 inhibitory action. In conclusion, various natural products exhibit atheroprotective effects via targeting HMG-R and PCSK-9 activities and lipoprotein metabolism, however, further clinical assessments are still warranted prior their approval for ASCVD risk management in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| |
Collapse
|
10
|
Glycyrrhizic Acid Scavenges Reactive Carbonyl Species and Attenuates Glycation-Induced Multiple Protein Modification: An In Vitro and In Silico Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7086951. [PMID: 34712386 PMCID: PMC8548169 DOI: 10.1155/2021/7086951] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/05/2022]
Abstract
The current study is aimed at studying the inhibitory effect of glycyrrhizic acid (GA) on D-ribose-mediated protein glycation via various physicochemical analyses and in silico approaches. Being a potent free radical scavenger and a triterpenoid saponin, GA plays a vital role in diminishing the oxidative stress and thus could be an effective inhibitor of the nonenzymatic glycation process. Our data showed that varying concentrations of GA inhibited the in vitro BSA-AGEs via inhibiting the formation of fructosamines, fluorescent AGEs, scavenging protein carbonyl and hydroxymethyl furfural (HMF) content, and protection against D-ribose-induced modification of BSA as evident by increased free Arg and Lys residues in GA-treated Gly-BSA samples. Moreover, GA also attenuated D-ribose-induced alterations in the secondary structure of BSA by protecting the α-helix and β-sheet conformers and amide-I band delocalization. In addition, GA attenuated the modification in β-cross amyloid structures of BSA and in silico molecular interaction study too showed strong binding of GA with higher number of Lys and Arg residues of BSA and binding energy (ΔG) of -8.8 Kcal/mol, when compared either to reference standard aminoguanidine (AG)-BSA complex (ΔG: -4.3 Kcal/mol) or D-ribose-BSA complex (ΔG: -5.2 Kcal/mol). Therefore, GA could be a new and favorable inhibitor of the nonenzymatic glycation process that ameliorates AGEs-related complications via attenuating the AGE formation and glycation-induced multiple protein modifications with a reduced risk of adverse effects on protein structure and functionality; hence, it could be investigated at further preclinical settings for the treatment and management of diabetes and age-associated complications.
Collapse
|
11
|
Ahmad P, Alvi SS, Iqbal J, Khan MS. Identification and evaluation of natural organosulfur compounds as potential dual inhibitors of α-amylase and α-glucosidase activity: an in-silico and in-vitro approach. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02799-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Song L, Zhang J, Lai R, Li Q, Ju J, Xu H. Chinese Herbal Medicines and Active Metabolites: Potential Antioxidant Treatments for Atherosclerosis. Front Pharmacol 2021; 12:675999. [PMID: 34054550 PMCID: PMC8155674 DOI: 10.3389/fphar.2021.675999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a complex chronic disease that occurs in the arterial wall. Oxidative stress plays a crucial role in the occurrence and progression of atherosclerotic plaques. The dominance of oxidative stress over antioxidative capacity generates excess reactive oxygen species, leading to dysfunctions of the endothelium and accelerating atherosclerotic plaque progression. Studies showed that Chinese herbal medicines and traditional Chinese medicine (TCM) might regulate oxidative stress; they have already been used to treat diseases related to atherosclerosis, including stroke and myocardial infarction. This review will summarize the mechanisms of oxidative stress in atherosclerosis and discuss studies of Chinese herbal medicines and TCM preparations treating atherosclerosis, aiming to increase understanding of TCM and stimulate research for new drugs to treat diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyi Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Sun M, Sheng Y, Zhu Y. Ginkgolide B alleviates the inflammatory response and attenuates the activation of LPS-induced BV2 cells in vitro and in vivo. Exp Ther Med 2021; 21:586. [PMID: 33850558 PMCID: PMC8027720 DOI: 10.3892/etm.2021.10018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/23/2020] [Indexed: 12/29/2022] Open
Abstract
Ginkgolide B (GB) is widely used in the treatment of neurological diseases and exerts anti-inflammatory and neuroprotective effects. Microglia serve an important role in central nervous inflammation. The present study investigated the effect of GB on central nervous inflammation in vivo and in vitro. BV2 cells were activated with lipopolysaccharide (LPS) to establish a cellular model of neuroinflammation. Cell viability was determined using the Cell Counting Kit-8 assay and the secreted levels of TNF-α, IL-1 and IL-6 were measured using ELISAs. The levels of nitric oxide (NO) was assessed using Griess assays. In addition, the mRNA and protein expression levels of inducible NO synthase and cyclooxygenase-2 (COX-2) were detected using reverse transcription-quantitative PCR and western blot analyses, respectively. Transwell assays were carried out to evaluate the cell migratory ability. For the in vivo studies, an LPS-induced neuroinflammation model was established in C57 mice. Western blot analysis and immunohistochemistry were performed to detect the expression of the microglial marker allograft inflammatory factor 1 in the hippocampal dentate gyrus and striatum. The expression levels of TNF-α, IL-1 and IL-6 in the hippocampal dentate gyrus and striatum were assessed using western blot analysis. The results revealed that GB reduced the inflammatory response and migration of LPS-induced BV2 cells. Furthermore, GB attenuated the activation of BV2 cells of the hippocampal dentate gyrus and striatum in the LPS-induced mice with neuroinflammation. Taken together, the findings of the present study demonstrated that GB alleviated the inflammatory response and attenuated the activation of LPS-induced BV2 cells in vitro and in vivo.
Collapse
Affiliation(s)
- Miaoxuan Sun
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yi Sheng
- Department of Anesthesia, Ouhai District Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Yanyan Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
14
|
Long SQ, Yu XF, Ge YL, Liu LX. Ginkgolide B ameliorates high-fat diet-induced hepatic steatosis and inflammation in mice. Shijie Huaren Xiaohua Zazhi 2020; 28:519-525. [DOI: 10.11569/wcjd.v28.i13.519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic liver injury caused by a series of inflammation, oxidative stress, and endoplasmic reticulum stress responses induced by lipid accumulation in the liver. Ginkgolide B (GB) has the functions of anti-inflammation, antioxidant stress, and maintenance of lipid metabolism homeostasis, and therefore may have a therapeutic effect on NAFLD.
AIM To explore whether GB has a therapeutic effect on NAFLD and analyze its mechanism.
METHODS C57BL/6J mice were divided into a normal control group (NC), 8 mg/kg GB group, high fat diet (HFD) group, HFD + 2 mg/kg GB group, HFD + 4 mg/kg GB group, and HFD + 8 mg/kg GB group. NAFLD was induced in mice by HFD feeding. Blood and liver tissues were collected for biochemical, pathological, and Western blot analyses.
RESULTS Pathological results showed that GB improved hepatic steatosis and reduced inflammatory response and lipid accumulation in liver cells caused by HFD feeding. Biochemical results showed that GB reduced the levels of alanine aminotransferase, aspartate aminotransferase, triglyceride, and total cholesterol in serum as well as the levels of interleukin-6, interleukin-1β, and tumor necrosis factor-α in live tissues in HFD-fed mice. Western blot results showed that GB inhibited the phosphorylation level of eukaryotic translation initiation factor-2α, and the expression of fatty acid synthase and activating transcription factor 4 in liver tissues induced by HFD feeding.
CONCLUSION GB has a protective effect on the liver of mice with NAFLD induced by HFD feeding, and the protective effect is related to the reduction of liver damage, steatosis, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Si-Qin Long
- Department of Infectious Diseases, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Xiu-Feng Yu
- Department of Emergency Medicine, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Yu-Li Ge
- Department of Infectious Diseases, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Lu-Xiang Liu
- Department of Infectious Diseases, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|