1
|
Xia X, Wu X, Jiang D, Hu Y, Cong X, Li J, Dai M, Du Y, Qi J. The inhibitory effect of swine TAB1 on the replication of pseudorabies virus. Vet Microbiol 2024; 296:110172. [PMID: 38971118 DOI: 10.1016/j.vetmic.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
TAK1-binding protein 1 (TAB1) assembles with TAK1 through its C-terminal domain, leading to the self-phosphorylation and activation of TAK1, which plays an important role in the activation of NF-κB and MAPK signaling pathway. Pseudorabies virus (PRV) is the pathogen of Pseudorabies (PR), which belongs to the Alphaherpesvirus subfamily and causes serious economic losses to the global pig industry. However, the impact of swine TAB1 (sTAB1) on PRV infection has not been reported. In this study, evidence from virus DNA copies, virus titer and western blotting confirmed that sTAB1 could inhibit PRV replication and knockout of sTAB1 by CRISPR-Cas9 gene editing system could promote PRV replication. Further mechanistic studies by real-time PCR and luciferase reporter gene assay demonstrated that sTAB1 could enhance the production of inflammatory factors and chemokines, IFN-β transcription level and IFN-β promoter activity after PRV infection. In summary, we clarify the underlying mechanism of sTAB1 in inhibiting PRV replication for the first time, which provides a new idea for preventing PRV infection and lays a foundation for PRV vaccine development.
Collapse
Affiliation(s)
- Xiujuan Xia
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; College of Life Science, Shandong Normal University, Jinan, China
| | - Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yue Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Juntong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; College of Life Science, Shandong Normal University, Jinan, China.
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; College of Life Science, Shandong Normal University, Jinan, China.
| |
Collapse
|
2
|
Jiang D, Jiang C, Sui C, Wu X, Hu Y, Lee C, Cong X, Li J, Du Y, Qi J. Swine NONO is an essential factor to inhibit pseudorabies virus infection. Vet Microbiol 2022; 275:109582. [DOI: 10.1016/j.vetmic.2022.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
3
|
Shinkai H, Takahagi Y, Matsumoto T, Toki D, Takenouchi T, Kitani H, Sukegawa S, Suzuki K, Uenishi H. A specific promoter-type in ribonuclease L gene is associated with phagocytic activity in pigs. J Vet Med Sci 2021; 83:1407-1415. [PMID: 34321379 PMCID: PMC8498842 DOI: 10.1292/jvms.21-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have previously generated Large White pigs with high immune competence using a selection strategy based on phagocytic activity (PA), capacity of alternative complement pathway, and
antibody response after vaccination against swine erysipelas. In this study, to identify the genetic changes caused by the immune selection pressure, we compared gene expression and
polymorphisms in the promoter region between pigs subjected to the immune selection (immune-selected pigs) and those that were not (non-selected pigs). After lipid A stimulation, using a
microarray analysis, 37 genes related to immune function and transcription factor activity showed a greater than three-fold difference in expression between macrophages derived from
immune-selected and non-selected pigs. We further performed a polymorphic analysis of the promoter region of the differentially expressed genes, and elucidated the predominant promoter-types
in the immune-selected and non-selected pigs, respectively, in the genes encoding ribonuclease L (RNASEL), sterile α motif and histidine-aspartate domain containing
deoxynucleoside triphosphate triphosphohydrolase 1, signal transducer and activator of transcription 3, and tripartite motif containing 21. Analysis of the association between these promoter
genotypes and the immune phenotypes revealed that the immune-selected promoter-type in RNASEL was associated with increased PA and was inherited recessively. Considering
that RNASEL has been reported to be involved in antimicrobial immune response of mice, it may be possible to enhance the PA of macrophages and improve disease resistance in
pig populations using RNASEL promoter-type as a DNA marker for selection.
Collapse
Affiliation(s)
- Hiroki Shinkai
- Clinical Biochemistry Unit, Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO).,Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| | | | - Toshimi Matsumoto
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| | - Daisuke Toki
- Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries (JATAFF)
| | - Takato Takenouchi
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| | - Hiroshi Kitani
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| | | | - Keiichi Suzuki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University
| | - Hirohide Uenishi
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
4
|
Inhibition of Antiviral Innate Immunity by Foot-and-Mouth Disease Virus L pro through Interaction with the N-Terminal Domain of Swine RNase L. J Virol 2021; 95:e0036121. [PMID: 33980594 DOI: 10.1128/jvi.00361-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the pathogen of foot-and-mouth disease (FMD), which is a highly contagious disease in cloven-hoofed animals. To survive in the host, FMDV has evolved multiple strategies to antagonize host innate immune responses. In this study, we showed that the leader protease (Lpro) of FMDV, a papain-like proteinase, promoted viral replication by evading the antiviral interferon response through counteracting the 2',5'-oligoadenylate synthetase (OAS)/RNase L system. Specifically, we observed that the titers of Lpro deletion virus were significantly lower than those of wild-type FMDV (FMDV-WT) in cultured cells. Our mechanistic studies demonstrated that Lpro interfered with the OAS/RNase L pathway by interacting with the N-terminal domain of swine RNase L (sRNase L). Remarkably, Lpro of FMDV exhibited species-specific binding to RNase L in that the interaction was observed only in swine cells, not human, monkey, or canine cells. Lastly, we presented evidence that by interacting with sRNase L, FMDV Lpro inhibited cellular apoptosis. Taken together, these results demonstrate a novel mechanism that Lpro utilizes to escape the OAS/RNase L-mediated antiviral defense pathway. IMPORTANCE FMDV is a picornavirus that causes a significant disease in agricultural animals. FMDV has developed diverse strategies to escape the host interferon response. Here, we show that Lpro of FMDV antagonizes the OAS/RNase L pathway, an important interferon effector pathway, by interacting with the N-terminal domain of sRNase L. Interestingly, such a virus-host interaction is species-specific because the interaction is detected only in swine cells, not in human, monkey, or canine cells. Furthermore, Lpro inhibits apoptosis through interacting with sRNase L. This study demonstrates a novel mechanism by which FMDV has evolved to inhibit host innate immune responses.
Collapse
|
5
|
Kim H, Kim AY, Choi J, Park SY, Park SH, Kim JS, Lee SI, Park JH, Park CK, Ko YJ. Foot-and-Mouth Disease Virus Evades Innate Immune Response by 3C-Targeting of MDA5. Cells 2021; 10:271. [PMID: 33572945 PMCID: PMC7912020 DOI: 10.3390/cells10020271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease caused by FMD virus (FMDV) in cloven-hoofed animals. Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are representative receptors in the cytoplasm for the detection of viral RNA and trigger antiviral responses, leading to the production of type I interferon. Although MDA5 is a crucial receptor for sensing picornavirus RNA, the interplay between MDA5 and FMDV is relatively unknown compared to the interplay between RIG-I and FMDV. Here, we observed that the FMDV infection inhibits MDA5 protein expression. Of the non-structural proteins, the Lb and 3C proteinases (Lbpro and 3Cpro) were identified to be primarily responsible for this inhibition. However, the inhibition by 3Cpro was independent of proteasome, lysosome and caspase-dependent pathway and was by 3C protease activity. A direct interaction between 3Cpro and MDA5 protein was observed. In conclusion, this is the first report that 3Cpro inhibits MDA5 protein expression as a mechanism to evade the innate immune response during FMDV infection. These results elucidate the pathogenesis of FMDV and provide fundamental insights for the development of a novel vaccine or therapeutic agent.
Collapse
Affiliation(s)
- Hyejin Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
- College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Korea
| | - Ah-Young Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Jieun Choi
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Sun Young Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
- College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Korea
| | - Sang Hyun Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Jae-Seok Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Sim-In Lee
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Choi-Kyu Park
- College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Korea
| | - Young-Joon Ko
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| |
Collapse
|
6
|
Xue Q, Liu H, Zhu Z, Xue Z, Liu X, Zheng H. Seneca Valley Virus 3C pro Cleaves PABPC1 to Promote Viral Replication. Pathogens 2020; 9:pathogens9060443. [PMID: 32512928 PMCID: PMC7350346 DOI: 10.3390/pathogens9060443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Seneca Valley Virus (SVV) is an oncolytic virus of the Picornaviridae family, which has emerged in recent years. The impact of SVV on host cell translation remains unknown. Here, we showed, for the first time, that SVV infection cleaved poly(A) binding protein cytoplasmic 1 (PABPC1). In SVV-infected cells, 50 kDa of the N terminal cleaved band and 25 kDa of the C terminal cleaved band of PABPC1 were detected. Further study showed that the viral protease, 3Cpro induced the cleavage of PABPC1 by its protease activity. The SVV strains with inactive point mutants of 3Cpro (H48A, C160A or H48A/C160A) can not be rescued by reverse genetics, suggesting that sites 48 and 160 of 3Cpro were essential for SVV replication. SVV 3Cpro induced the cleavage of PABPC1 at residue 437. A detailed data analysis showed that SVV infection and the overexpression of 3Cpro decreased the protein synthesis rates. The protease activity of 3Cpro was essential for inhibiting the protein synthesis. Our results also indicated that PABPC1 inhibited SVV replication. These data reveal a novel antagonistic mechanism and pathogenesis mediated by SVV and highlight the importance of 3Cpro on SVV replication.
Collapse
|
7
|
Zhao Y, Wang LQ, Zheng HH, Yang YR, Liu F, Zheng LL, Jin Y, Chen HY. Construction and immunogenicity of a gE/gI/TK-deleted PRV based on porcine pseudorabies virus variant. Mol Cell Probes 2020; 53:101605. [PMID: 32464159 DOI: 10.1016/j.mcp.2020.101605] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Pseudorabies (PR) caused by re-emerging pseudorabies virus (PRV) variant has outbroken among PRV vaccine-immunized swine herds on many Chinese pig farms, with severe socioeconomic consequences since late 2011. Here, a gE/gI/TK-deleted recombinant virus (rPRV NY-gE-/gI-/TK-) was constructed based on PRV NY strain from 2012 through homologous DNA recombination and gene-editing technology termed clustered regularly interspaced palindromic repeats (CRISPR)/associated (Cas9) system. The rPRV NY-gE-/gI-/TK- strain showed similar growth kinetics to the parental PRV NY strain in vitro, and was safe for mice. Sixty mice were injected subcutaneously (s.c.) twice with 106.0 TCID50 of rPRV NY-gE-/gI-/TK- and DMEM, respectively, with two-week interval. The levels of PRV gB antibodies and neutralizing antibodies against PRV NY in mice immunized with rPRV NY-gE-/gI-/TK- were higher than those in the DMEM control group. The number of T lymphocyte subclasses CD3+, CD4+ and CD8+ in rPRV NY-gE-/gI-/TK--immunized mice was higher than that in DMEM-injected mice. After challenge with 106.0 TCID50 PRV NY at 42 dpi, all rPRV NY-gE-/gI-/TK--immunized mice survived without exhibiting any pathological lesions in different tissues and intranuclear eosinophilic inclusions of the brain, and the viral genomic copy numbers in various organs of mice were obviously lower than DMEM group. These results showed the rPRV NY-gE-/gI-/TK- could be a promising next-generation vaccine to control now epidemic PR in China.
Collapse
Affiliation(s)
- Yu Zhao
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lin-Qing Wang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China; Department of Life Science, Zhengzhou Normal University, Zhengzhou, 450044, Henan Province, People's Republic of China
| | - Hui-Hua Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yu-Rong Yang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Fang Liu
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lan-Lan Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yue Jin
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China.
| |
Collapse
|