1
|
Wu L, Lan D, Sun B, Su R, Pei F, Kuang Z, Su Y, Lin S, Wang X, Zhang S, Chen X, Jia J, Zeng C. Luoshi Neiyi Prescription inhibits estradiol synthesis and inflammation in endometriosis through the HIF1A/EZH2/SF-1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118659. [PMID: 39098622 DOI: 10.1016/j.jep.2024.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endometriosis (EMS) is a common gynecological disease that causes dysmenorrhea, chronic pelvic pain and infertility. Luoshi Neiyi Prescription (LSNYP), a traditional Chinese medicine (TCM) formula, is used to relieve EMS in the clinic. AIMS This study aimed to examine the active components of LSNYP and the possible mechanism involved in its treatment of EMS. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was used to identify the chemical components of LSNYP. Human primary ectopic endometrial stromal cells (ecESCs) and eutopic endometrial stromal cells (euESCs) were isolated, and the expression levels of hypoxia inducible factor 1A (HIF1A), enhancer of zeste homolog 2 (EZH2) and steroidogenic factor 1 (SF-1) were detected by immunofluorescence and qPCR. Cobalt chloride (CoCl2) was utilized to construct an in vitro hypoxic environment, and lentiviruses were engineered to downregulate HIF1A and EZH2 and upregulate EZH2. Subsequently, the expression levels of HIF1A, EZH2, and SF-1 were measured using qPCR or western blotting. The binding of EZH2 to the SF-1 locus in ESCs was examined via ChIP. Furthermore, the effects of LSNYP on the HIF1A/EZH2/SF-1 pathway were evaluated both in vitro and in vivo. RESULTS A total of 185 components were identified in LSNYP. The protein and gene expression levels of HIF1A and SF-1 were increased, whereas those of EZH2 were decreased in ecESCs. After treating euESCs with 50 μmol L-1 CoCl2 for 24 h, cell viability and estradiol (E2) production were enhanced. Hypoxia decreased EZH2 protein expression, while si-HIF1A increased it. SF-1 was increased when EZH2 was downregulated in normal and hypoxic environments, whereas the overexpression of EZH2 led to a decrease in SF-1 expression. ChIP revealed that hypoxia reduced EZH2 binding to the SF-1 locus in euESCs. In vitro, LSNYP-containing serum decreased E2 and prostaglandin E2 (PGE2) production, inhibited cell proliferation and invasion, and reduced the expression of HIF1A, SF-1, steroidogenic acute regulatory protein (StAR), and aromatase cytochrome P450 (P450arom). In vivo, LSNYP suppressed inflammation and adhesion and inhibited the HIF1A/EZH2/SF-1 pathway in endometriotic tissues. CONCLUSIONS LSNYP may exert pharmacological effects on EMS by inhibiting E2 synthesis and inflammation through regulation of the HIF1A/EZH2/SF-1 pathway. These results suggest that LSNYP may be a promising candidate for the treatment of EMS.
Collapse
Affiliation(s)
- Lizheng Wu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Dantong Lan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Bowen Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rui Su
- Department of Gynecology, Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, Guangdong, 510801, China
| | - Fangli Pei
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Zijun Kuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yixuan Su
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shuhong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xuanyin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Siyuan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinjin Jia
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Cheng Zeng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| |
Collapse
|
2
|
Zhang X, Han X, Zhang Y. CPNE3 interaction with RACK1 protects against myocardial ischemia/reperfusion injury. Exp Ther Med 2022; 23:128. [PMID: 34970351 PMCID: PMC8713176 DOI: 10.3892/etm.2021.11051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Copine 3 (CPNE3) and receptor for activated C kinase 1 (RACK1) have been determined to be risk factors for patients with acute myocardial ischemia/reperfusion (I/R). The present study aimed to evaluate the role of CPNE3 and its interaction with RACK1 in myocardial (I/R) injury. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting were performed to detect CPNE3 and RACK1 expression levels in H9c2 cells before and after the transfection of CPNE3 overexpression plasmid or small interfering RNA-RACK1. Cell viability was detected using a Cell Counting Kit-8 assay, and immunoprecipitation assays were performed to determine the interaction between CPNE3 and RACK1. A commercial kit was used to examine lactate dehydrogenase (LDH) levels. The expression levels of inflammatory cytokines were detected via RT-qPCR and western blotting. Cell apoptosis was assessed via TUNEL staining and western blotting. The results demonstrated that the expression levels of CPNE3 and RACK1 were decreased in hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocytes, which was consistent with the expression levels observed in the myocardial I/R injury rat model. It was found that CPNE3 overexpression upregulated RACK1 expression, increased cell viability and suppressed the release of LDH in H/R-induced H9c2 cells. Furthermore, CPNE3 overexpression inhibited the release of inflammatory cytokines and decreased cell apoptosis in H/R-induced cardiomyocytes by activating RACK1 expression. The present study suggested that CPNE3 served an important role in preventing I/R injury by interacting with RACK1, providing novel insight into the prevention of myocardial I/R injury, as well as the treatment and care of patients with myocardial I/R.
Collapse
Affiliation(s)
- Xiaoqun Zhang
- Cardiology Department One, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xue Han
- Cardiology Department One, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yanan Zhang
- Cardiology Department One, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
3
|
Qian Q, Xie Y. Propofol protects H9C2 cells against hypoxia/reoxygenation injury through miR-449a and NR4A2. Exp Ther Med 2021; 22:1181. [PMID: 34475971 PMCID: PMC8406901 DOI: 10.3892/etm.2021.10615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/25/2021] [Indexed: 12/31/2022] Open
Abstract
Propofol has been revealed to protect cardiomyocytes against myocardial ischemia injury, although the underlying mechanism remains incompletely understood. H9C2 cells were used to generate a hypoxia/reoxygenation (H/R) in vitro model for the present study. Reverse transcription-quantitative PCR and western blotting were performed to measure the expression levels of microRNA (miR)-449a and nuclear receptor subfamily 4 group A member 2 (NR4A2). The CCK-8, BrdU, EdU, and caspase-3 activity assays and western blot analysis were employed to detect cell viability, proliferation, and apoptosis. The target relationship between miR-449a and NR4A2 was verified through dual-luciferase reporter assays. The results confirmed that exposure of the cells to H/R resulted in severe cell injury. However, the presence of propofol improved cell activity by promoting cell viability and proliferation and inhibiting cell apoptosis. The beneficial effect of propofol on H/R-mediated injury could be abrogated by the inhibition of NR4A2 mediated by miR-449a. Thus, the present study demonstrated that propofol counteracted cardiomyocyte H/R injury by inhibiting miR-449a to upregulate NR4A2.
Collapse
Affiliation(s)
- Qiu Qian
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yingxiang Xie
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
4
|
Increased prostaglandin-D2 in male STAT3-deficient hearts shifts cardiac progenitor cells from endothelial to white adipocyte differentiation. PLoS Biol 2020; 18:e3000739. [PMID: 33370269 PMCID: PMC7793290 DOI: 10.1371/journal.pbio.3000739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/08/2021] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Cardiac levels of the signal transducer and activator of transcription factor-3 (STAT3) decline with age, and male but not female mice with a cardiomyocyte-specific STAT3 deficiency conditional knockout (CKO) display premature age-related heart failure associated with reduced cardiac capillary density. In the present study, isolated male and female CKO-cardiomyocytes exhibit increased prostaglandin (PG)-generating cyclooxygenase-2 (COX-2) expression. The PG-degrading hydroxyprostaglandin-dehydrogenase-15 (HPGD) expression is only reduced in male cardiomyocytes, which is associated with increased prostaglandin D2 (PGD2) secretion from isolated male but not female CKO-cardiomyocytes. Reduced HPGD expression in male cardiomyocytes derive from impaired androgen receptor (AR)–signaling due to loss of its cofactor STAT3. Elevated PGD2 secretion in males is associated with increased white adipocyte accumulation in aged male but not female hearts. Adipocyte differentiation is enhanced in isolated stem cell antigen-1 (SCA-1)+ cardiac progenitor cells (CPC) from young male CKO-mice compared with the adipocyte differentiation of male wild-type (WT)-CPC and CPC isolated from female mice. Epigenetic analysis in freshly isolated male CKO-CPC display hypermethylation in pro-angiogenic genes (Fgfr2, Epas1) and hypomethylation in the white adipocyte differentiation gene Zfp423 associated with up-regulated ZFP423 expression and a shift from endothelial to white adipocyte differentiation compared with WT-CPC. The expression of the histone-methyltransferase EZH2 is reduced in male CKO-CPC compared with male WT-CPC, whereas no differences in the EZH2 expression in female CPC were observed. Clonally expanded CPC can differentiate into endothelial cells or into adipocytes depending on the differentiation conditions. ZFP423 overexpression is sufficient to induce white adipocyte differentiation of clonal CPC. In isolated WT-CPC, PGD2 stimulation reduces the expression of EZH2, thereby up-regulating ZFP423 expression and promoting white adipocyte differentiation. The treatment of young male CKO mice with the COX inhibitor Ibuprofen or the PGD2 receptor (DP)2 receptor antagonist BAY-u 3405 in vivo increased EZH2 expression and reduced ZFP423 expression and adipocyte differentiation in CKO-CPC. Thus, cardiomyocyte STAT3 deficiency leads to age-related and sex-specific cardiac remodeling and failure in part due to sex-specific alterations in PGD2 secretion and subsequent epigenetic impairment of the differentiation potential of CPC. Causally involved is the impaired AR signaling in absence of STAT3, which reduces the expression of the PG-degrading enzyme HPGD. Impaired androgen-receptor-signaling due to STAT3-deficiency promotes increased prostaglandin-D2-secretion from male but not female cardiomyocytes; this induces an epigenetic switch in cardiac progenitor cells from endothelial to white adipocyte differentiation, associated with reduced cardiac capillary density, increased cardiac white fat deposits and heart failure in aged male but not female mice.
Collapse
|