1
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
2
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
A Poly(carbazole-alt-triazole) with Thiabendazole Side Groups as an "On-Off-On" Fluorescent Probe for Detection of Cu(II) Ion and Cysteine. J Fluoresc 2023:10.1007/s10895-023-03164-9. [PMID: 36790630 DOI: 10.1007/s10895-023-03164-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
A novel conjugated polymer PCZBTA-TBZ containing thiabendazole as recognition unit was synthesized via Suzuki coupling reaction, and its structural characterization, spectroscopic analysis and photophysical properties were investigated. In the metal ion response study, the addition of Cu2+ led to the occurrence of the photoinduced electron transfer (PET) mechanism, which significantly quenched the fluorescence of the polymer PCZBTA-TBZ with a quenching effect of 98%. Furthermore, I- can significantly quench the fluorescence of the polymer, but other anions have no such effect. According to the density functional theory calculation, compared with other polycarbazoles or other alternative copolymers containing carbazole, with alternating carbazole and triazole enhances the electron mobility and reduces the energy band gap of the polymer. Due to the strong coordination ability between Cu2+ and Cys, the adding Cys competes the Cu2+ in the [PCZBTA-TBZ-Cu2+] complex, blocking the occurrence of PET, and the fluorescence intensity of PCZBTA-TBZ is restored. The addition of other amino acids caused almost no change. The polymer is expected to be used for dual fluorescence detection of specific metal ions and Cys.
Collapse
|
4
|
Ali M, Memon N, Ali M, Chana AS, Gaur R, Jiahai Y. Recent development in fluorescent probes for copper ion detection. Curr Top Med Chem 2022; 22:835-854. [DOI: 10.2174/1568026622666220225153703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Copper is the third most common heavy metal and an indispensable component of life. Variations of body copper levels, both structural and cellular, are related to a number of disorders; consequently, pathophysiological importance of copper ions demands the development of sensitivity and selective for detecting these organisms in biological systems. In recent years, the area of fluorescent sensors for detecting copper metal ions has seen revolutionary advances. Consequently, closely related fields have raised awareness of several diseases linked to copper fluctuations. Further developments in this field of analysis could pave the way for new and innovative treatments to combat these diseases. This review reports on recent progress in the advancement of three fields of fluorescent probes; chemodosimeters, near IR fluorescent probes, and ratiometric fluorescent probes. Methods used to develop these fluorescent probes and the mechanisms that govern their reaction to specific analytes and their applications in studying biological systems, are also given.
Collapse
Affiliation(s)
- Mukhtiar Ali
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Manthar Ali
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Sami Chana
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Rashmi Gaur
- Natural Products Laboratory, International Joint Laboratory of tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ye Jiahai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
| |
Collapse
|
5
|
Carneiro LM, Bartoloni FH, Angolini CFF, Keppler AF. Solvent-free synthesis of nitrone-containing template as a chemosensor for selective detection of Cu(II) in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120473. [PMID: 34715559 DOI: 10.1016/j.saa.2021.120473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
A state-of-the-art method was developed for repurposing nitrone-containing compounds in the chemosensory field, the ability of the designed molecules to chelate metal cations was evaluated, and their unprecedented solubility in water was confirmed. A facile, rapid, and solvent-free method of synthesizing small molecular mass chemosensors was developed by using a modulative α-aryl-N-aryl nitrone template. α-(Z)-Imidazol-4-ylmethylen-N-phenyl nitrone (Nit1) and α-(Z)-2-pyridyl-N-phenyl nitrone (Nit2) were prepared in 15 min, isolated in less than 60 min with ca. 90% yield, and screened against nine metal cations. Nit1 is a small-molecular-mass compound (188 g mol-1) that is water-soluble and has specificity for sensing Cu2+ with an association constant of K = 1.53 × 1010 and a limit of detection (LOD) of 0.06 ppm. These properties make Nit1 a competitive chemosensor for the detection of Cu2+ in aqueous solution. The nitrone-containing template used in this study is a step forward for new and small chemosensory entities.
Collapse
Affiliation(s)
- Leonardo M Carneiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André, SP ZIP CODE 09210-580, Brazil
| | - Fernando H Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André, SP ZIP CODE 09210-580, Brazil
| | - Célio F F Angolini
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André, SP ZIP CODE 09210-580, Brazil
| | - Artur F Keppler
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André, SP ZIP CODE 09210-580, Brazil.
| |
Collapse
|
6
|
Chan WC, Saad HM, Sim KS, Lee VS, Ang CW, Yeong KY, Tan KW. A rhodamine based chemosensor for solvent dependent chromogenic sensing of cobalt (II) and copper (II) ions with good selectivity and sensitivity: Synthesis, filter paper test strip, DFT calculations and cytotoxicity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120099. [PMID: 34198119 DOI: 10.1016/j.saa.2021.120099] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
A new chemosensor 1 was synthesized by reacting rhodamine B hydrazide and 2,3,4-trihydroxybenzaldehyde, which was then characterized by spectroscopic techniques and single crystal X-ray crystallography. Sensor 1 has the ability to sense Co2+/Cu2+ ions by "naked-eye" with an apparent colour change from colourless to pink in different solvent system, MeCN and DMF respectively. Furthermore, it can selectively detect Co2+/Cu2+ among wide range of different metal ions, and it exhibits low detection limit of 4.425 × 10-8 M and 1.398 × 10-7 M respectively. Binding mode of the two complexes were determined to be 1:1 stoichiometry for Co2+ complex and 1:2 stoichiometry for Cu2+ complex through Job's plot, IR spectroscopy, mass spectrometry and 1H NMR spectroscopy. Moreover, reversibility of the sensor 1 as copper (II) ion detector was determined by using EDTA and the results showed that sensor 1 can be reused for at least 6 cycles. Other than that, a low cost chemosensor test strips were fabricated for the convenient "naked-eye" detection of Co2+ and Cu2+ in pure aqueous media. The MTT assay was conducted in order to determine the cytotoxicity of sensor 1 towards human cell lines.
Collapse
Affiliation(s)
- Wei Chuen Chan
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hazwani Mat Saad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Kong Wai Tan
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Loya M, Hazarika SI, Pahari P, Atta AK. Fluorometric detection of Cu2+ and Ni2+ by a quinoline-based glucopyranose derivative via the excimer of quinoline subunit. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Silpcharu K, Soonthonhut S, Sukwattanasinitt M, Rashatasakhon P. Fluorescent Sensor for Copper(II) and Cyanide Ions via the Complexation-Decomplexation Mechanism with Di(bissulfonamido)spirobifluorene. ACS OMEGA 2021; 6:16696-16703. [PMID: 34235342 PMCID: PMC8246698 DOI: 10.1021/acsomega.1c02744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 05/27/2023]
Abstract
A novel spirobifluorene derivative bearing two bissulfonamido groups is successfully synthesized by Sonogashira coupling. This compound exhibits a strong fluorescence quenching by Cu(II) ion in a 50% mixture between acetonitrile and 20 mM pH 7.0 N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) buffer with a detection limit of 98.2 nM. However, this sensor also shows ratiometric signal shifts from blue to yellow in the presence of Zn(II), Pb(II), and Hg(II) ions. The static quenching mechanism is verified by the signal reversibility using ethylenediaminetetraacetic acid (EDTA) and the Stern-Volmer plots at varying temperatures. The Cu(II)-spirobifluorene complex shows a highly selective fluorescence enhancement upon the addition of CN- ion with the detection limit of 390 nM. The application of this complex for quantitative analysis of spiked CN- ion in real water samples resulted in good recoveries.
Collapse
Affiliation(s)
- Komthep Silpcharu
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Siraporn Soonthonhut
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Mongkol Sukwattanasinitt
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paitoon Rashatasakhon
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Hanmeng O, Chailek N, Charoenpanich A, Phuekvilai P, Yookongkaew N, Sanmanee N, Sirirak J, Swanglap P, Wanichacheva N. Cu 2+-selective NIR fluorescence sensor based on heptamethine cyanine in aqueous media and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118606. [PMID: 32629406 DOI: 10.1016/j.saa.2020.118606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
A near-infrared (NIR) colorimetric fluorescence sensor, Cy7C3, based on heptamethine cyanine dye was synthesized for determining the presence of Cu2+ ions. The sensor showed highly sensitive fluorescence quenching toward Cu2+ ions in acetonitrile/buffer solution at physiological pH with long emission wavelength of 718 nm. Cy7C3 also provided an excellent selectivity to Cu2+ ions over other competing metal ions, with a low detection limit of 9 ppb, which was lower than the maximum concentration of Cu2+ ions in drinking water of U.S. EPA. Cy7C3 could achieve naked-eye detection of Cu2+ ions via the color change from blue to colorless, which allowed determination of Cu2+ ions in hydroponic fertilizers. Additionally, the sensor was developed to detect Cu2+ ions in HepG2 cancer cells via fluorescence imaging.
Collapse
Affiliation(s)
- Oranual Hanmeng
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nirumon Chailek
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prattana Phuekvilai
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nimnara Yookongkaew
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Natdhera Sanmanee
- Department of Environmental Science, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pattanawit Swanglap
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nantanit Wanichacheva
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|