1
|
Fu CX, Dai L, Yuan XY, Xu YJ. Effects of Fish Oil Combined with Selenium and Zinc on Learning and Memory Impairment in Aging Mice and Amyloid Precursor Protein Processing. Biol Trace Elem Res 2021; 199:1855-1863. [PMID: 32666432 DOI: 10.1007/s12011-020-02280-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease is characterized by the aggregation of amyloid-beta (Aβ) peptide into plaques and neurofibrillary tangles. Aβ peptide is generated by the cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretase. The present study was conducted to investigate the effects of fish oil (or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), selenium, and zinc on learning and memory impairment in an aging mouse model and on APP. We performed the Morris water maze and platform recorder tests on male Kunming mice (10/group) grouped as control and D-galactose-induced aging model mice treated with vehicle, fish oil, fish oil + selenium, fish oil + selenium + zinc, and positive control (red ginseng extract). Fish oil + zinc + selenium for 7 weeks significantly improved learning and memory impairments in aging model animals in the Morris water maze and platform recorder tests, as evidenced by shortened incubation periods and number of errors. In vitro analysis of Aβ1-40 content in APP695-transfected CHO cells revealed a decrease after treatment with EPA, DHA, and their combinations with selenium or selenium and zinc. Assaying β- and γ-secretase activities revealed a decrease in PC12 cells and mouse serum as well as a decrease in β-site APP-cleaving enzyme 1 and presenilin 1 protein levels in the PC12 cells and mouse serum. Taken together, our results show that fish oil combined with selenium and zinc inhibited APP processing and alleviated learning and memory impairment in a mouse model of aging.
Collapse
Affiliation(s)
- Chao-Xu Fu
- Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China
| | - Lin Dai
- Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China
| | - Xiu-Yuan Yuan
- Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China
| | - Yan-Ji Xu
- Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China.
| |
Collapse
|
2
|
Zhou M, Hu N, Liu M, Deng Y, He L, Guo C, Zhao X, Li Y. A Candidate Drug for Nonalcoholic Fatty Liver Disease: A Review of Pharmacological Activities of Polygoni Multiflori Radix. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5462063. [PMID: 32382557 PMCID: PMC7193283 DOI: 10.1155/2020/5462063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Nonalcoholic fatty liver disease, a type of metabolic syndrome, continues to rise globally. Currently, there is no approved drug for its treatment. Improving lifestyle and exercise can alleviate symptoms, but patients' compliance is poor. More and more studies have shown the potential of Polygoni Multiflori Radix (PMR) in the treatment of NAFLD and metabolic syndrome. Therefore, this paper reviews the pharmacological effects of PMR and its main chemical components (tetrahydroxystilbene glucoside, emodin, and resveratrol) on NAFLD. PMR can inhibit the production of fatty acids and promote the decomposition of triglycerides, reduce inflammation, and inhibit the occurrence of liver fibrosis. At the same time, it maintains an oxidation equilibrium status in the body, to achieve the therapeutic purpose of NAFLD and metabolic syndrome. Although more standardized studies and clinical trials are needed to confirm its efficacy, PMR may be a potential drug for the treatment of NAFLD and its complications. However, the occurrence of adverse reactions of PMR has affected its extensive clinical application. Therefore, it is necessary to further study its toxicity mechanism, enhance efficacy and control toxicity, and even reduce toxicity, which will contribute to the safe clinical use of PMR.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Ying Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Linfeng He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Chaocheng Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Xingtao Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
3
|
Wang Y, Wang P, Chen F, Lulu M, Huang S, Liu Z. Potential synaptic plasticity-based Shenzhiling oral liquid for a SAD Mouse Model. Brain Behav 2019; 9:e01385. [PMID: 31429527 PMCID: PMC6749598 DOI: 10.1002/brb3.1385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Synaptic plasticity is the basis of memory formation. The pathological manifestations of abnormal glucose metabolism in the nervous system of sporadic Alzheimer's disease (SAD) may affect synaptic plasticity, thus causing memory damage. As a traditional Chinese medicine compound preparation, the mechanism by which Shenzhiling (SZL) oral liquid can alleviate the cognitive impairment of SAD by improving synaptic plasticity remains unclear. OBJECTIVE This article mainly discusses whether SZL can exert a protective synaptic effect as mediated by glutamate receptors and glycogen synthesis kinase 3β (GSK3β); further, it discusses whether SZL can improve cognitive function in SAD. METHODS C57BL/6 mice were used as a SAD model after injection with streptozotocin (STZ) into the bilateral lateral ventricles; mice of the same background were injected with artificial cerebrospinal fluid into bilateral ventricles and were used as a control group. After 3 months of exposure to the intervention, the step-down test was carried out. Western blot was used to detect the levels of NMDAR2B, p-NMDAR2B, mGlu5, GSK3β, and p-GSK3β in the hippocampus of mice. Immunohistochemical analysis was used to observe the number of GSK3β-positive cells in the CA1 region of mouse hippocampus. RESULTS The memory retention ability of mice was significantly improved after 3 months of SZL treatment, and the expression levels of NMDAR2B, mGlu5, and GSK3β were significantly changed. CONCLUSION Shenzhiling provides a potential for the treatment for SAD with traditional Chinese medicine.
Collapse
Affiliation(s)
- Yahan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fang Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China.,Rehabilitation centre, The Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical University, Urumqi, China
| | - Mana Lulu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Shuaiyang Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|