1
|
Kobayashi Y, Huang J, Barnett BK, Falcon CY, Falcon PA, Hirschberg CS, Fine DH, Ye Y, Shimizu E. Delayed Tooth Development and the Impaired Differentiation of Stem/Progenitor Cells in Incisors from Type 2 Diabetes Mice. Int J Mol Sci 2024; 25:13619. [PMID: 39769381 PMCID: PMC11728242 DOI: 10.3390/ijms252413619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Patients with diabetes mellitus (DM) have an increased risk of tooth decay caused by alterations in their tooth development and their oral environment, as well as a tendency to present with pulp infection due to compromised immune response. The present study analyzed the characteristic alterations in tooth development under DM conditions using incisors from db/db type 2 diabetic mouse model (T2DM mice). In micro-CT analyses, T2DM mice showed delayed dentin and enamel formation. Through transcriptomic analyses, pre-ameloblast- and pre-odontoblast-specific genes were found to be significantly decreased in the incisors of T2DM mice, whereas major ameloblast- and mature odontoblast-specific genes were not changed. Stem cell markers were decreased in T2DM mice compared to those from the control mice, suggesting that the stemness of dental pulp cells (DPCs) is attenuated in T2DM mice. In vitro analyses demonstrated that DPCs from T2DM mice have lower colony-forming units (CFU), slower propagation, and diminished differentiation characteristics compared to the control. These data suggest that T2DM conditions could impair the differentiation property of multiple progenitor/stem cells in the tooth, resulting in delayed tooth development in T2DM mice.
Collapse
Affiliation(s)
- Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA; (Y.K.); (J.H.); (D.H.F.)
| | - Jia Huang
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA; (Y.K.); (J.H.); (D.H.F.)
| | - Brandon K. Barnett
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA (C.Y.F.); (P.A.F.); (C.S.H.)
| | - Carla Y. Falcon
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA (C.Y.F.); (P.A.F.); (C.S.H.)
| | - Paul A. Falcon
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA (C.Y.F.); (P.A.F.); (C.S.H.)
| | - Craig S. Hirschberg
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA (C.Y.F.); (P.A.F.); (C.S.H.)
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA; (Y.K.); (J.H.); (D.H.F.)
| | - Yi Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010, USA;
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA; (Y.K.); (J.H.); (D.H.F.)
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA (C.Y.F.); (P.A.F.); (C.S.H.)
| |
Collapse
|
2
|
Kagami H, Li X. Spheroids and organoids: Their implications for oral and craniofacial tissue/organ regeneration. J Oral Biol Craniofac Res 2024; 14:540-546. [PMID: 39092136 PMCID: PMC11292544 DOI: 10.1016/j.jobcr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Spheroids are spherical aggregates of cells. Normally, most of adherent cells cannot survive in suspension; however, if they adhere to each other and grow to a certain size, they can survive without attaching to the dish surface. Studies have shown that spheroid formation induces dedifferentiation and improves plasticity, proliferative capability, and differentiation capability. In particular, spontaneous spheroids represent a selective and efficient cultivation technique for somatic stem cells. Organoids are considered mini-organs composed of multiple types of cells with extracellular matrices that are maintained in three-dimensional culture. Although their culture environment is similar to that of spheroids, organoids consist of differentiated cells with fundamental tissue/organ structures similar to those of native organs. Organoids have been used for drug development, disease models, and basic biological studies. Spheroid culture has been reported for various cell types in the oral and craniofacial regions, including salivary gland epithelial cells, periodontal ligament cells, dental pulp stem cells, and oral mucosa-derived cells. For broader clinical application, it is crucial to identify treatment targets that can leverage the superior stemness of spheroids. Organoids have been developed from various organs, including taste buds, oral mucosa, teeth, and salivary glands, for basic biological studies and also with the goal to replace damaged or defective organs. The development of novel immune-tolerant cell sources is the key to the widespread clinical application of organoids in regenerative medicine. Further efforts to understand the underlying basic mechanisms of spheroids and organoids will lead to the development of safe and efficient next-generation regenerative therapies.
Collapse
Affiliation(s)
- Hideaki Kagami
- Department of Dentistry and Oral Surgery, Aichi Medical University, Aichi, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| |
Collapse
|
3
|
Li N, Dai X, Yang F, Sun Y, Wu X, Zhou Q, Chen K, Sun J, Bi W, Shi L, Yu Y. Spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells maintain pluripotency of stem cells by regulating hypoxia-inducible factors. Biol Res 2023; 56:17. [PMID: 37016436 PMCID: PMC10074860 DOI: 10.1186/s40659-023-00421-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/27/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Spontaneous spheroid culture is a novel three-dimensional (3D) culture strategy for the rapid and efficient selection of progenitor cells. The objectives of this study are to investigate the pluripotency and differentiation capability of spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells (AB-MSCs); compare the advantages of spontaneous spheroids to those of mechanical spheroids; and explore the mechanisms of stemness enhancement during spheroid formation from two-dimensional (2D) cultured cells. METHODS AB-MSCs were isolated from the alveolar bones of C57BL/6 J mice. Spontaneous spheroids formed in low-adherence specific culture plates. The stemness, proliferation, and multi-differentiation capacities of spheroids and monolayer cultures were investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, alkaline phosphatase (ALP) activity, and oil-red O staining. The pluripotency difference between the spontaneous and mechanical spheroids was analyzed using RT-qPCR. Hypoxia-inducible factor (HIFs) inhibition experiments were performed to explore the mechanisms of stemness maintenance in AB-MSC spheroids. RESULTS AB-MSCs successfully formed spontaneous spheroids after 24 h. AB-MSC spheroids were positive for MSC markers and pluripotency markers (Oct4, KLF4, Sox2, and cMyc). Spheroids showed higher Ki67 expression and lower Caspase3 expression at 24 h. Under the corresponding conditions, the spheroids were successfully differentiated into osteogenic and adipogenic lineages. AB-MSC spheroids can induce neural-like cells after neurogenic differentiation. Higher expression of osteogenic markers, adipogenic markers, and neurogenic markers (NF-M, NeuN, and GFAP) was found in spheroids than in the monolayer. Spontaneous spheroids exhibited higher stemness than mechanical spheroids did. HIF-1α and HIF-2α were remarkably upregulated in spheroids. After HIF-1/2α-specific inhibition, spheroid formation was significantly reduced. Moreover, the expression of the pluripotency genes was suppressed. CONCLUSIONS Spontaneous spheroids from AB-MSCs enhance stemness and pluripotency. HIF-1/2α plays an important role in the stemness regulation of spheroids. AB-MSC spheroids exhibit excellent multi-differentiation capability, which may be a potent therapy for craniomaxillofacial tissue regeneration.
Collapse
Affiliation(s)
- Ni Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China, 201318
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China, 201318
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Xiaofeng Dai
- Department of Stomatology, Shanghai Jing'an District Dental Clinic, Shanghai, China, 15 Pingxingguan Road, 200040
| | - Fei Yang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Yang Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Xingwen Wu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Qianrong Zhou
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Kai Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China, 200072
| | - Jian Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Wei Bi
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Le Shi
- Department of Stomatology, Shanghai Jing'an District Dental Clinic, Shanghai, China, 15 Pingxingguan Road, 200040.
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032.
| |
Collapse
|
4
|
Oka H, Ito S, Kawakami M, Sasaki H, Abe S, Matsunaga S, Morita S, Noguchi T, Kasahara N, Tokuyama A, Kasahara M, Katakura A, Yajima Y, Mizoguchi T. Subset of the periodontal ligament expressed leptin receptor contributes to part of hard tissue-forming cells. Sci Rep 2023; 13:3442. [PMID: 36859576 PMCID: PMC9977939 DOI: 10.1038/s41598-023-30446-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The lineage of periodontal ligament (PDL) stem cells contributes to alveolar bone (AB) and cementum formation, which are essential for tooth-jawbone attachment. Leptin receptor (LepR), a skeletal stem cell marker, is expressed in PDL; however, the stem cell capacity of LepR+ PDL cells remains unclear. We used a Cre/LoxP-based approach and detected LepR-cre-labeled cells in the perivascular around the root apex; their number increased with age. In the juvenile stage, LepR+ PDL cells differentiated into AB-embedded osteocytes rather than cementocytes, but their contribution to both increased with age. The frequency of LepR+ PDL cell-derived lineages in hard tissue was < 20% per total cells at 1-year-old. Similarly, LepR+ PDL cells differentiated into osteocytes following tooth extraction, but their frequency was < 9%. Additionally, both LepR+ and LepR- PDL cells demonstrated spheroid-forming capacity, which is an indicator of self-renewal. These results indicate that both LepR+ and LepR- PDL populations contributed to hard tissue formation. LepR- PDL cells increased the expression of LepR during spheroid formation, suggesting that the LepR- PDL cells may hierarchically sit upstream of LepR+ PDL cells. Collectively, the origin of hard tissue-forming cells in the PDL is heterogeneous, some of which express LepR.
Collapse
Affiliation(s)
- Hirotsugu Oka
- grid.265070.60000 0001 1092 3624Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Shinichirou Ito
- grid.265070.60000 0001 1092 3624Department of Pharmacology, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Mana Kawakami
- grid.265070.60000 0001 1092 3624Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Hodaka Sasaki
- grid.265070.60000 0001 1092 3624Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Shinichi Abe
- grid.265070.60000 0001 1092 3624Department of Anatomy, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.265070.60000 0001 1092 3624Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.265070.60000 0001 1092 3624Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Satoru Matsunaga
- grid.265070.60000 0001 1092 3624Department of Anatomy, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.265070.60000 0001 1092 3624Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.265070.60000 0001 1092 3624Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Sumiharu Morita
- grid.265070.60000 0001 1092 3624Department of Anatomy, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Taku Noguchi
- grid.265070.60000 0001 1092 3624Department of Anatomy, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Norio Kasahara
- grid.265070.60000 0001 1092 3624Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Akihide Tokuyama
- grid.265070.60000 0001 1092 3624Department of Pharmacology, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Masataka Kasahara
- grid.265070.60000 0001 1092 3624Department of Pharmacology, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.265070.60000 0001 1092 3624Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.265070.60000 0001 1092 3624Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Akira Katakura
- grid.265070.60000 0001 1092 3624Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.265070.60000 0001 1092 3624Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.265070.60000 0001 1092 3624Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Yasutomo Yajima
- grid.265070.60000 0001 1092 3624Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.411611.20000 0004 0372 3845MDU Hospital, Implant Center, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Toshihide Mizoguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061, Japan. .,Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, 101-0061, Japan.
| |
Collapse
|
5
|
Nanosilica-Anchored Polycaprolactone/Chitosan Nanofibrous Bioscaffold to Boost Osteogenesis for Bone Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248832. [PMID: 36557965 PMCID: PMC9786850 DOI: 10.3390/molecules27248832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The strategy of incorporating bioactive inorganic nanomaterials without side effects as osteoinductive supplements is promising for bone regeneration. In this work, a novel biomass nanofibrous scaffold synthesized by electrospinning silica (SiO2) nanoparticles into polycaprolactone/chitosan (PCL/CS) nanofibers was reported for bone tissue engineering. The nanosilica-anchored PCL/CS nanofibrous bioscaffold (PCL/CS/SiO2) exhibited an interlinked continuous fibers framework with SiO2 nanoparticles embedded in the fibers. Compact bone-derived cells (CBDCs), the stem cells derived from the bone cortex of the mouse, were seeded to the nanofibrous bioscaffolds. Scanning electron microscopy and cell counting were used to observe the cell adhesion. The Counting Kit-8 (CCK-8) assay was used. Alkaline phosphatase (ALP), Alizarin red staining, real-time Polymerase Chain Reaction and Western blot tests were performed to confirm the osteogenesis of the CBDCs on the bioscaffolds. The research results demonstrated that the mechanical property of the PCL together with the antibacterial and hydrophilic properties of the CS are conducive to promoting cell adhesion, growth, migration, proliferation and differentiation. SiO2 nanoparticles, serving as bone induction factors, effectively promote the osteoblast differentiation and bone regeneration. This novel SiO2-anchored nanofibrous bioscaffold with superior bone induction activity provides a better way for bone tissue regeneration.
Collapse
|
6
|
Masola V, Franchi M, Zaza G, Atsina FM, Gambaro G, Onisto M. Heparanase regulates EMT and cancer stem cell properties in prostate tumors. Front Oncol 2022; 12:918419. [PMID: 35965510 PMCID: PMC9363836 DOI: 10.3389/fonc.2022.918419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer displays a certain phenotypic plasticity that allows for the transition of cells from the epithelial to the mesenchymal state. This process, known as epithelial–mesenchymal transition (EMT), is one of the factors that give the tumor cells greater invasive and migratory capacity with subsequent formation of metastases. In addition, many cancers, including prostate cancer, are derived from a cell population that shows the properties of stem cells. These cells, called cancer stem cells (CSCs) or tumor-initiating cells, not only initiate the tumor process and growth but are also able to mediate metastasis and drug resistance. However, the impact of EMT and CSCs in prostate cancer progression and patient survival is still far from fully understood. Heparanase (HPSE), the sole mammalian endoglycosidase capable of degrading heparan sulfate (HS), is also involved in prostate cancer progression. We had previously proved that HPSE regulates EMT in non-cancerous pathologies. Two prostate cancer cell lines (DU145 and PC3) were silenced and overexpressed for HPSE. Expression of EMT and stemness markers was evaluated. Results showed that the expression of several EMT markers are modified by HPSE expression in both the prostate cancer cell lines analyzed. In the same way, the stemness markers and features are also modulated by HPSE expression. Taken together, the present findings seem to prove a new mechanism of action of HPSE in sustaining prostate cancer growth and diffusion. As for other tumors, these results highlight the importance of HPSE as a potential pharmacological target in prostate cancer treatment.
Collapse
Affiliation(s)
- Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Maurizio Onisto, ; Valentina Masola,
| | - Marco Franchi
- Department of Life Quality Sciences, University of Bologna, Rimini, Italy
| | - Gianluigi Zaza
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Maurizio Onisto, ; Valentina Masola,
| |
Collapse
|
7
|
Matsumura N, Li X, Uchikawa-Kitaya E, Li N, Dong H, Chen K, Yoshizawa M, Kagami H. Tissue Engineering with Compact Bone-Derived Cell Spheroids Enables Bone Formation around Transplanted Tooth. Tissue Eng Regen Med 2022; 19:377-387. [PMID: 35119647 PMCID: PMC8971212 DOI: 10.1007/s13770-021-00423-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although tooth transplantation is a desirable treatment option for congenital defects of permanent teeth in children, transplantation to a narrow alveolar ridge is not feasible. In this study, we investigated the possibility of bone tissue engineering simultaneously with tooth transplantation to enhance the width of the alveolar bone. METHODS Bone marrow mononuclear cells or cortical bone-derived mesenchymal stromal cell spheroids were seeded onto atelocollagen sponge and transplanted with freshly extracted molars from mice of the same strain. New bone formation around the tooth root was evaluated using micro-computed tomography and histological analysis. Tooth alone, or tooth with scaffold but without cells, was also transplanted and served as controls. RESULTS Micro-computed tomography showed new bone formation in the furcation area in all four groups. Remarkable bone formation outside the root was also observed in the cortical bone-derived mesenchymal stromal cell group, but was scarce in the other three groups. Histological analysis revealed that the space between the new bone and the root was filled with collagen fibers in all four groups, indicating that the periodontal ligament was maintained. CONCLUSION This study demonstrates the potential of simultaneous alveolar bone expansion employing bone tissue engineering approach using cortical bone-derived mesenchymal stromal cell spheroids for tooth transplantation. The use of an orthotopic transplantation model may further clarify the feasibility and functional recovery of the transplanted tooth over a longer period.
Collapse
Affiliation(s)
- Nahomi Matsumura
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Division of Hard Tissue Research, Institute of Oral Science, Matsumoto Dental University, 1780 Hirooka Gobara, Shiojiri, 399-0781, Japan
| | - Eri Uchikawa-Kitaya
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, 200031, China
| | - Hongwei Dong
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Michiko Yoshizawa
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan.
- Division of Hard Tissue Research, Institute of Oral Science, Matsumoto Dental University, 1780 Hirooka Gobara, Shiojiri, 399-0781, Japan.
- Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-9639, Japan.
| |
Collapse
|
8
|
Kyriakopoulou K, Kefali E, Piperigkou Z, Riethmüller C, Greve B, Franchi M, Götte M, Karamanos NK. EGFR is a pivotal player of the E2/ERβ - mediated functional properties, aggressiveness, and stemness in triple-negative breast cancer cells. FEBS J 2021; 289:1552-1574. [PMID: 34665934 DOI: 10.1111/febs.16240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is defined by aggressive behavior, limited response to chemotherapy and lower overall survival rates. The increased metastatic potential of TNBC is a combined result of extensive extracellular matrix (ECM) remodeling that leads to cytoskeleton rearrangement and activation of epithelial-to-mesenchymal transition (EMT). The overexpression of epidermal growth factor receptor (EGFR) in TNBC tumors has been linked to induced expression of EMT-related molecules. EMT activation has often been associated with increased metastasis and stemness. Recently, we described the crucial role of EGFR/estrogen receptor beta (ERβ) interplay in the regulation of invasion and cell-matrix interactions. In this study, we report on the EGFR-ERβ functional relationship in connection to the aggressiveness and cancer stem cell (CSC)-like characteristics of TNBC cells. ERβ-suppressed and MDA-MB-231 cells were subjected to downstream EGFR inhibition and/or estradiol stimulation to assess alterations in functional parameters as well as in morphological characteristics, studied by scanning electron, atomic force, and immunofluorescence microscopies. Moreover, the expression and localization of key EMT and CSC-related markers were also evaluated by real-time qPCR, immunofluorescence microscopy, and flow cytometry. EGFR inhibition resulted in an overall suppression of aggressive functional characteristics, which occurred in an ERβ-mediated manner. These changes could be attributed to a reduction, at the molecular level, of EMT and stemness-linked markers, most notably reduced expression of Notch signaling constituents and the cell surface proteoglycan, syndecan-1. Collectively, our study highlights the importance of EGFR signaling as a key effector of aggressiveness, EMT, and stemness in an ERβ-dependent way in TNBC.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Elena Kefali
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Germany
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Germany
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
9
|
Dong H, Li X, Chen K, Li N, Kagami H. Cryopreserved Spontaneous Spheroids from Compact Bone-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering. Tissue Eng Part C Methods 2021; 27:253-263. [PMID: 33798009 PMCID: PMC8064946 DOI: 10.1089/ten.tec.2021.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spontaneously formed spheroids from mouse compact bone-derived mesenchymal stromal cells (CB-MSCs) possess enhanced stemness and superior plasticity. In this study, the effect of cryopreservation on viability, stemness, and osteogenic differentiation capability of spontaneous CB-MSC spheroids were investigated. CB-MSCs were isolated from mouse femur and tibia. Spheroids were cryopreserved with various concentrations of dimethyl sulfoxide (DMSO). After thawing, the number of living and dead cells was measured. The expression levels of stem cell markers and osteogenic marker genes were analyzed. The cryopreserved and noncryopreserved spheroids were transplanted in mice with a beta-tricalcium phosphate as a scaffold to evaluate the in vivo bone-forming capability. The percentage of living cells was highest when 5% DMSO was used as a cryoprotectant, confirmed by the number of dead cells. The expression of stem cell marker genes and osteogenic differentiation capability were maintained after cryopreservation with 5% DMSO. The cryopreserved spontaneous CB-MSC spheroids showed remarkable new bone formation in vivo, identical to that of the noncryopreserved spheroids even without osteogenic induction. The cryopreserved spontaneous CB-MSC spheroids retained stemness and osteogenic differentiation capability and highlight the utility of spontaneous CB-MSC spheroids as ready-to-use tissue-engineered products for bone tissue engineering.
Collapse
Affiliation(s)
- Hongwei Dong
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Jhala D, Rather HA, Vasita R. Extracellular matrix mimicking polycaprolactone-chitosan nanofibers promote stemness maintenance of mesenchymal stem cells via spheroid formation. ACTA ACUST UNITED AC 2020; 15:035011. [PMID: 32266877 DOI: 10.1088/1748-605x/ab772e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of clinical applications has led to a perpetual increase in the demand for mesenchymal stem cells (MSCs). However, the ex vivo expansion of MSCs while maintaining their stemness and differentiation potential remains an immense challenge. MSCs require high cell density for their intercellular communication and specific physico-chemical cues from the surrounding environment for spheroid formation in order to maintain their stemness. Inadequacy of the traditional in vitro cell culture method (tissue culture plastic surface) to fulfill any of these special requirements is responsible for inducing the loss of stem cell properties of the MSCs over time. In this study, we propose that glucosaminoglycan (GAG) mimicking ultrafine nanofibers could support the spheroid culture for in vitro human MSC expansion. The geometrical and biochemical properties of nanofibers provide biomimicking cues to MSCs, as well as enhance cell-cell interactions and stimulate spheroid formation in MSCs, which subsequently result in increased cell proliferation, enhanced expression of stem cell markers and maintenance of their multilineage differentiation potential. Furthermore, close monitoring of the behavior of MSCs on nanofibers serves as the key to understand their mode of action in niche formation. Interestingly, GAG mimicking substrate stimulated MSCs for long-distance intercellular communication via 'tunneling tubes', their subsequent migration and niche formation. These kinds of cellular interactions over long distances have rarely been observed in MSCs to provide better insight for future studies on MSC niche. Furthermore, PCL-CHT nanofibers were observed to be as conducive to use as tissue culture polystyrene for stem cell expansion. Overall, these polymeric nanofibers provide a more relevant, convenient and more suitable substrate than the conventional monolayer culture for in vitro MSC expansion.
Collapse
Affiliation(s)
- Dhwani Jhala
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | | | | |
Collapse
|
11
|
Chihara T, Zhang Y, Li X, Shinohara A, Kagami H. Effect of short-term betamethasone administration on the regeneration process of tissue-engineered bone. Histol Histopathol 2019; 35:709-717. [PMID: 31854454 DOI: 10.14670/hh-18-193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Local inflammation at the transplanted site of tissue-engineered bone may cause apoptosis of the transplanted cells, thus negatively affecting bone regeneration. To maximize the efficacy of bone tissue engineering, the local effect of short-term corticosteroid administration at the transplanted site of tissue-engineered bone was studied with respect to the expression of inflammatory cytokines. Compact bone-derived cells from mouse leg bones were isolated, cultured and seeded onto β-tricalcium phosphate granules. The constructs were transplanted to the back of syngeneic mice. Betamethasone sodium phosphate was administered intraperitoneally to an experimental (betamethasone) group, whereas the same amount of saline was administered to a control group. When betamethasone was administered three times (immediately after operation and 12 hours and 24 hours after transplantation), the number of SP7/osterix-positive osteoblasts was larger in the betamethasone group. Three times of betamethasone administration (immediately after operation and 12 hours and 24 hours after transplantation) did not change the number of apoptotic cells and osteoclasts, but showed a slight upregulation of IL-4 and a downregulation of IL-6. However, 7 doses of betamethasone administration (over 7 consecutive days) increased the number of apoptotic cells and osteoclasts, which was correlated with a downregulation of IL-4 and an upregulation of IL-6. TNF-α expression levels showed no significant differences between the two groups. The results showed beneficial effects of 3 betamethasone administrations for bone regeneration therapy but contrary effects when betamethasone was administered 7 times due to the downregulation of anti-inflammatory cytokines (IL-4) and the upregulation of inflammatory cytokines (IL-6). As a conclusion, our results suggested the importance of the cautious usage of corticosteroids to control local inflammation at transplanted sites in bone tissue engineering.
Collapse
Affiliation(s)
- Takahiro Chihara
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Yiming Zhang
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Atsushi Shinohara
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Midorigaoka Dental Clinic, Toyota, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|