1
|
Yang X, Hong C, Guan T, Zhang C, Xiao P, Yang Y, Xiao H, He Z. Investigation of the effects of Periplaneta americana (L.) extract on ischemic stroke based on combined multi-omics of gut microbiota. Front Pharmacol 2024; 15:1429960. [PMID: 39679371 PMCID: PMC11638836 DOI: 10.3389/fphar.2024.1429960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Ischemic stroke (IS) is a highly lethal type of cardiovascular and cerebrovascular disease. Improving survival rates and promoting recovery in patients with IS pose significant challenges, however, recent research has identified the gut-brain axis as a therapeutic target. In this study, we evaluated the regulatory effect of Periplaneta americana (L.) extract (PAS840), which has established anti-inflammatory, antioxidant, and neuroprotective effects, on the gut microbiota using a rat model of temporary middle cerebral artery occlusion (tMCAO). We evaluated the protective effects of PAS840 on brain damage in IS rats through TTC (triphenyltetrazolium chloride), Nissl staining, and pathological section analysis. Additionally, we investigated the impact of PAS840 on the gut microbiota and metabolites using 16S rRNA sequencing, untargeted metabolomics of gut contents, and transcriptomics analyses of brain tissues to explore its mechanism of action. PAS840 intervention resulted in significant changes in the gut microbiota, including an increase in the abundance of probiotic flora, decrease in the abundance of harmful flora, and significant changes in metabolite profiles. It also attenuated brain damage, decreased platelet activity, inhibited oxidative stress and genes related to inflammation, and improved neurological function in rats. These findings suggest that PAS840 has preventive and therapeutic effects against IS via the gut-brain axis by regulating the gut microbiota and related metabolites. Accordingly, PAS840 is a candidate therapeutic drug for further research.
Collapse
Affiliation(s)
- Xin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Canhui Hong
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Tangfei Guan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, Chengdu, China
| | - ChengGui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Peiyun Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Yongshou Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Zhengchun He
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| |
Collapse
|
2
|
Zhao B, Zhang Y, Xu J, Li Y, Yuan Q, Zhou C. Periplaneta Americana extract inhibits osteoclastic differentiation in vitro. Cell Prolif 2023; 56:e13341. [PMID: 36210640 PMCID: PMC9890529 DOI: 10.1111/cpr.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Periplaneta americana extract (PAE) is proven to be promising in treating fever, wound healing, liver fibrosis, and cardiovascular disease. However, the role of PAE in skeletal disorders remains unclear. This study investigated whether PAE regulates osteoclastic differentiation in vitro via the culture using RAW264.7 cells and bone marrow derived macrophages (BMDMs). MATERIALS AND METHODS RAW264.7 cells and BMDMs were cultured and induced for osteoclastic differentiation supplementing with different concentrations of PAE (0, 0.1, 1, and 10 mg/mL). Cell counting kit-8 (CCK-8) assay was used to detect the cytotoxicity and cell proliferation. TRAP staining, actin ring staining, real-time quantitative PCR (RT-qPCR), and bone resorption activity test were performed to detect osteoclastic differentiation. RT-qPCR and enzyme-linked immunosorbent assay (ELISA) were conducted to assay the expression and secretion of inflammatory factors. RNA sequencing (RNA-seq) and western blot analysis were carried out to uncover the underlying mechanism. RESULTS CCK-8 results showed that 10 mg/mL and a lower concentration of PAE did not affect cell proliferation. RT-qPCR analysis verified that PAE down-regulated the osteoclastic genes Nfatc1, Ctsk, and Acp5 in macrophages. Moreover, PAE restrained the differentiation, formation, and function of osteoclasts. Besides, RT-qPCR and ELISA assays showed that PAE decreased inflammatory genes expression and reduced the secretion of inflammatory factors, including IL1β, IL6, and TNFα. Subsequent RNA-seq analysis identified possible genes and signaling pathways of PAE-mediated osteoclastogenesis suppression. CONCLUSIONS Our study indicates that PAE has inhibitive effects on osteoclastogenesis and may be a potential therapeutic alternative for bone diseases.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jie Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Oral Implantology, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Pediatric Dentistry, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
3
|
Huajuan J, Xulong H, Bin X, Yue W, Yongfeng Z, Chaoxiang R, Jin P. Chinese herbal injection for cardio-cerebrovascular disease: Overview and challenges. Front Pharmacol 2023; 14:1038906. [PMID: 36909150 PMCID: PMC9998719 DOI: 10.3389/fphar.2023.1038906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Cardio-cerebrovascular diseases are the leading cause of death worldwide and there is currently no optimal treatment plan. Chinese herbal medicine injection (CHI) is obtained by combining traditional Chinese medicine (TCM) theory and modern production technology. It retains some characteristics of TCM while adding injection characteristics. CHI has played an important role in the treatment of critical diseases, especially cardio-cerebrovascular diseases, and has shown unique therapeutic advantages. TCMs that promote blood circulation and remove blood stasis, such as Salvia miltiorrhiza, Carthami flos, Panax notoginseng, and Chuanxiong rhizoma, account for a large proportion of CHIs of cardio-cerebrovascular disease. CHI is used to treat cardio-cerebrovascular diseases and has potential pharmacological activities such as anti-platelet aggregation, anti-inflammatory, anti-fibrosis, and anti-apoptosis. However, CHIs have changed the traditional method of administering TCMs, and the drugs directly enter the bloodstream, which may produce new pharmacological effects or adverse reactions. This article summarizes the clinical application, pharmacological effects, and mechanism of action of different varieties of CHIs commonly used in the treatment of cardio-cerebrovascular diseases, analyzes the causes of adverse reactions, and proposes suggestions for rational drug use and pharmaceutical care methods to provide a reference for the rational application of CHIs for cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Jiang Huajuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huang Xulong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Bin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Yongfeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren Chaoxiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei Jin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248882. [PMID: 36558015 PMCID: PMC9782659 DOI: 10.3390/molecules27248882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
In traditional Chinese medicine (TCM), insects from the family Blattidae have a long history of application, and their related active compounds have excellent pharmacological properties, making them a prominent concern with significant potential for medicinal and healthcare purposes. However, the medicinal potential of the family Blattidae has not been fully exploited, and many problems must be resolved urgently. Therefore, a comprehensive review of its chemical composition, pharmacological activities, current research status, and existing problems is necessary. In order to make the review clearer and more systematic, all the contents were independently elaborated and summarized in a certain sequence. Each part started with introducing the current situation or a framework and then was illustrated with concrete examples. Several pertinent conclusions and outlooks were provided after discussing relevant key issues that emerged in each section. This review focuses on analyzing the current studies and utilization of medicinal insects in the family Blattidae, which is expected to provide meaningful and valuable relevant information for researchers, thereby promoting further exploration and development of lead compounds or bioactive fractions for new drugs from the insects.
Collapse
|
5
|
Lin S, Shi Q, Ge Z, Liu Y, Cao Y, Yang Y, Zhao Z, Bi Y, Hou Y, Wang S, Wang X, Mao J. Efficacy and Safety of Traditional Chinese Medicine Injections for Heart Failure With Reduced Ejection Fraction: A Bayesian Network Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2021; 12:659707. [PMID: 34916929 PMCID: PMC8669995 DOI: 10.3389/fphar.2021.659707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Heart failure as an important issue in global public health, has brought a heavy economic burden. Traditional Chinese medicine injections (TCMIs) have significant effects on heart failure with reduced ejection fraction (HFrEF). However, it is difficult for clinicians to identify the differences in clinical efficacy and safety of various TCMIs. The purpose of this study is to compare the efficacy and safety of various TCMIs for treating HFrEF by conducting a Bayesian network meta-analysis (NMA) and to further provide references for clinical decision-making. Methods: The clinical randomized controlled trials of TCMIs for treating HFrEF were searched in seven database from inception to August 3rd, 2021. The Cochrane collaboration's tool was used to assess the risk of bias. NMA was performed in a Bayesian hierarchical framework. The surface under the cumulative ranking curve (SUCRA), the multi-dimensional efficacy analysis, the comparison-adjusted funnel plot, and the node-splitting analysis were conducted using R software. Results: A total of 107 eligible RCTs involving 9,073 HFrEF patients and 6 TCMIs were included. TCMIs include Huangqi injection (HQ) also called Astragalus injection, Shenfu injection (SF), Shengmai injection (SGM), Shenmai injection (SM), Xinmailong injection (XML), and Yiqifumai lyophilized injection (YQFM). The results of NMA and SUCRA showed that with conventional treatment (CT) as a common control, in terms of clinical efficacy, CT + XML was most effective in New York Heart Association cardiac functional classification efficiency, brain natriuretic peptide, and N-terminal pro-brain natriuretic peptide; the CT + SM was most effective in 6-min walking test, left ventricular end-diastolic diameter, left ventricular end-systolic diameter and cardiac output; the CT + YQFM was most effective in left ventricular ejection fraction; the CT + HQ was most effective in stroke volume; the CT + SF was most effective in Minnesota Living with Heart Failure Questionnaire. In terms of safety, there was no significant difference between CT + TCMIs and CT. Conclusion: This Bayesian network meta-analysis results show that the combination of qualified TCMIs and CT is more effective for HFrEF patients than CT alone, and CT + XML and CT + SM may be one of the potential optimal treatments. Also, the safety of these TCMIs needs to be further observed. However, due to some limitations, the conclusions need to be verified by more large-sample, double-blind, multi-center RCTs.
Collapse
Affiliation(s)
- Shanshan Lin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingyang Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao Ge
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yawen Cao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqiang Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingfei Bi
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yazhu Hou
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|