1
|
Wang Z, Guo Z, Liu H, Liu T, Liu D, Yu S, Tang H, Zhang H, Mou Q, Zhang B, Cao J, Schroyen M, Hou S, Zhou Z. A high-quality assembly revealing the PMEL gene for the unique plumage phenotype in Liancheng ducks. Gigascience 2025; 14:giae114. [PMID: 39804725 PMCID: PMC11727711 DOI: 10.1093/gigascience/giae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Plumage coloration is a distinctive trait in ducks, and the Liancheng duck, characterized by its white plumage and black beak and webbed feet, serves as an excellent subject for such studies. However, academic comprehension of the genetic mechanisms underlying duck plumage coloration remains limited. To this end, the Liancheng duck genome (GCA_039998735.1) was hereby de novo assembled using HiFi reads, and F2 segregating populations were generated from Liancheng and Pekin ducks. The aim was to identify the genetic mechanism of white plumage in Liancheng ducks. RESULTS In this study, 1.29 Gb Liancheng duck genome was de novo assembled, involving a contig N50 of 12.17 Mb and a scaffold N50 of 83.98 Mb. Beyond the epistatic effect of the MITF gene, genome-wide association study analysis pinpointed a 0.8-Mb genomic region encompassing the PMEL gene. This gene encoded a protein specific to pigment cells and was essential for the formation of fibrillar sheets within melanosomes, the organelles responsible for pigmentation. Additionally, linkage disequilibrium analysis revealed 2 candidate single-nucleotide polymorphisms (Chr33: 5,303,994A>G; 5,303,997A>G) that might alter PMEL transcription, potentially influencing plumage coloration in Liancheng ducks. CONCLUSIONS Our study has assembled a high-quality genome for the Liancheng duck and has presented compelling evidence that the white plumage characteristic of this breed is attributable to the PMEL gene. Overall, these findings offer significant insights and direction for future studies and breeding programs aimed at understanding and manipulating avian plumage coloration.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Zhanbao Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfei Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tong Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dapeng Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Simeng Yu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hehe Tang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiming Mou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junting Cao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Shuisheng Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Ren P, Yang L, Khan MZ, Jing Y, Zhang M, Qi C, Zhang X, Liu X, Liu Z, Zhang S, Zhu M. Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks. Animals (Basel) 2024; 14:3111. [PMID: 39518834 PMCID: PMC11544815 DOI: 10.3390/ani14213111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Plumage color is a key trait for identifying waterfowl breeds with significant economic importance. A white-feathered group has recently emerged within the native Matahu duck population, presenting an opportunity for breeding new lines. However, the genetic basis for this plumage variation is still unknown, necessitating further research. This study aims to identify the genetic mechanisms underlying the emergence of white-feathered individuals in the Matahu duck population through combined genome and transcriptome analysis, providing insights for selective breeding and the development of new white-feathered lines. In this study, a total of 1344 selected genes and 1406 significantly differentially expressed genes were identified through selection signal analysis and transcriptomic analysis, respectively. The functional enrichment of these genes revealed several key signaling pathways, including those related to cGMP-PKG, cAMP, PI3K-Akt, and MAPK. Furthermore, important candidate genes involved in melanin biosynthesis, such as MITF, MC1R, TYR, TYRP1, and ABCB6, were identified. Notably, 107 genes were detected by both methods, and, among these, DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9 are suggested to play a role in melanin formation and potentially influence plumage traits. Through the integrative approach combining genomic selection signals and transcriptomic analyses, we identified several candidate genes directly associated with plumage color, including MITF, TYR, TYRP1, and MC1R, along with multiple signaling pathways linked to melanin formation. We hypothesize that the expression of DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9, detected by both methods, may be closely related to the regulation of plumage color traits. These findings provide a foundational basis for further research aimed at elucidating the genetic mechanisms governing plumage color variation in ducks.
Collapse
Affiliation(s)
- Pengwei Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Liu Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yadi Jing
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Meixia Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Chao Qi
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Xin Zhang
- Jining Animal Husbandry and Veterinary Career Development Centre, Jining 272002, China
| | - Xiang Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Zhansheng Liu
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Shuer Zhang
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Mingxia Zhu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
3
|
Zhang Y, Li X, Guo Q, Wang Z, Jiang Y, Yuan X, Chen G, Chang G, Bai H. Genome-wide association study reveals 2 copy number variations associated with the variation of plumage color in the white duck hybrid population. Poult Sci 2024; 103:104107. [PMID: 39094499 PMCID: PMC11342262 DOI: 10.1016/j.psj.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Plumage color is an intuitive external poultry characteristic with rich manifestations and complex genetic mechanisms. In our previous study, we observed that there were more dark variations in plumage color in the F2 population derived from the hybridization of 2 white duck varieties. Therefore, based on the statistics of plumage color of 308 F2 populations, we further used the resequencing data of these individuals to detect copy number variations (CNVs) in the whole genome and conducted genome-wide association studies (GWAS) to determine the genetic basis related to plumage color traits. The CNV detection revealed 9,337 CNVs, with an average length of 15,950 bp and a total length of 142.02 MB, accounting for approximately 12.91% of the reference genome. The CNV distribution on the chromosomes was relatively uniform, and the number of CNVs on each chromosome positively correlated with the length of the chromosome. In the pure black plumage group, 2,101 CNVs were only identified, and 1,714 were specifically identified in the pure white plumage group. Ten CNVs were randomly selected for validation using quantitative real-time PCR, and 9 CNVs had the same CNV types as predicted, with an accuracy of 90%. Based on GWAS, we identified 2 CNVs potentially associated with plumage color variations, with the associated CNV regions covering 9 genes. Enrichment analysis of these 9 candidate genes showed significant enrichment of 3 pathways (ribosome biogenesis in eukaryotes, RNA transport, and protein export) and 17 gene ontology terms. Among these, VWA5A can downregulate MITF by binding to the regulatory factors SOX10. The occurrence of CNV may indirectly contribute to duck plumage color variation by affecting the regulatory factors of the switch gene MITF in the melanogenesis pathway. These findings have improved the understanding of the genetic basis of duck plumage color variation and have been beneficial for developing and using plumage color traits in subsequent poultry breeding.
Collapse
Affiliation(s)
- Yi Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaofan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoya Yuan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Wang Z, Guo Z, Mou Q, Liu H, Liu D, Tang H, Hou S, Schroyen M, Zhou Z. Unique feather color characteristics and transcriptome analysis of hair follicles in Liancheng White ducks. Poult Sci 2024; 103:103794. [PMID: 38718539 PMCID: PMC11097064 DOI: 10.1016/j.psj.2024.103794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024] Open
Abstract
Avian feather color is a fascinating trait, and the genetic mechanism of duck plumage formation is still in the preliminary stage. In this study, feather color of Liancheng White ducks was analyzed by determination of melanin content and RNA-seq analysis. In this research, 9 ducks from Mallards (n = 3), Liancheng White (n = 3) and Pekin ducks (n = 3) were used by high performance liquid chromatography (HPLC) and Masson-Fontana staining to reveal the difference of feather melanin content. RNA-seq from 11 hair follicle tissues (1- and 8-wk-old) of Liancheng White ducks (n = 5) and Pekin ducks (n = 7) was used to analyze the candidate genes for the feather melanin synthesis, and Immunofluorescence experiment was used to show the protein expression in 6 black- and white-feathered ducks. Pectorale, skin, liver, fat, brain, heart, kidney, lung, spleen of an 8-wk-old black-feathered Mallard were collected for candidate gene expression. The results showed that the contents of feathers, beak, web melanin in Liancheng White ducks were higher than in Pekin ducks (p < 0.05). Melanin within hair follicles was located in the barb ridge and hair matrix of black feather duck, also we found that TYRP1, TYR, SOX10 genes were differentially expressed between Liancheng White and Pekin ducks (p < 0.05), and these genes were mainly expressed showed in duck skin tissues. This study revealed the unique feather color phenotype of Liancheng White duck shedding light on the transcriptome that underlies it.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Zhanbao Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Qiming Mou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongfei Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dapeng Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hehe Tang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Zhengkui Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
5
|
Yuan B, Qi Y, Zhang X, Hu J, Fan Y, Ji X. The relationship of MITF gene expression and promoter methylation with plumage colour in quail. Br Poult Sci 2024; 65:259-264. [PMID: 38578288 DOI: 10.1080/00071668.2024.2326962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024]
Abstract
1. This study focused on the relationship between MITF mRNA expression and plumage colour in quail and the effect of promoter methylation on the expression of MITF mRNA.2. The CDS region of MITF mRNA was cloned by RT-PCR, followed by DNA sequencing. The RT-qPCR method was used to analyse the expression levels of MITF mRNA in dorsal skin tissue in Korean quail and Beijing white quail. The promoter region of the MITF gene was cloned, and the CpG island was predicted by the CpGplot program. The methylation levels of the CpG island were analysed using BS-PCR technology.3. Quail MITF mRNA contains a 1,476 bp complete ORF, which encodes a 492 amino acid residue protein. The MITF protein has no signal peptide or transmembrane region. The expression of MITF mRNA in dorsal tissue of Korean quail was significantly higher than that in Beijing white quail (p < 0.01). Abundant cis-elements and a 346 bp CpG island were found in the promoter region of the MITF gene. The average methylation level of the CpG island was 22 (22%) in Korean quail, and 46 (30%) in Beijing white quail (p < 0.05).4. The hypermethylation of the MITF gene promoter region in Beijing white quail resulted in a decrease in expression level, which was related to white feather colour.
Collapse
Affiliation(s)
- B Yuan
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - Y Qi
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - X Zhang
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - J Hu
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - Y Fan
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - Xingyu Ji
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| |
Collapse
|
6
|
Lin R, Zhao F, Xiong T, Lai L, Li H, Lin W, Xiao T, Lin W. Genetic mapping identifies SNP mutations in MITF-M promoter associated with melanin formation in Putian black duck. Poult Sci 2024; 103:103191. [PMID: 37980740 PMCID: PMC10679944 DOI: 10.1016/j.psj.2023.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
The coloration of plumage in poultry species has substantial economic significance. Putian black ducks encompass 2 distinct strains characterized by black and white plumage variations resulting from selective breeding. This study aimed to identify the molecular mechanisms responsible for plumage coloration in these 2 distinct strains. A comprehensive genome-wide association study was conducted using DNA data sourced from a F2 segregating population, consisting of 71 individuals with black plumage and 39 individuals with white plumage, derived from these distinct 2 strains. This analysis revealed that 894 nucleotide polymorphisms and identified 58 candidate genes. Subsequent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes coenrichment analyses identified MITF as a key candidate gene implicated in melanin biosynthesis. Furthermore, extensive screening of significant polymorphic loci within MITF was carried out via mass spectrometry in 3 distinct populations: 100 individuals with black plumage and 100 individuals with white plumage from the F0 generation; and 50 with black plumage form the F1 generation). Eighteen candidate polymorphic loci were identified demonstrating significant associations with variations in black and white plumage. Notably, 8 of these loci were located within the 2,000 bp region upstream of MITF-M. To validate the critical regulatory role of MITF-M in black and white plumage formation, a dual-fluorescence reporter system was constructed, and dual-fluorescence activity was assessed. The results revealed that the fluorescence activity at wild-type sites (corresponding to black plumage) was significantly higher than that at the mutant-type sites (associated with white plumage) (P < 0.01). To corroborate the pivotal role of MITF-M in black and white plumage formation, qPCR was employed to evaluate the expression levels of various MITF variants in black and white feather bulbs. This analysis demonstrated that only MITF-M exhibited specific expression in black feather bulbs. These results elucidate the central role of polymorphic mutations within the MITF promoter region in the regulation of black and white plumage coloration in Putian black ducks. This study extends our understanding of mechanisms governing duck plumage coloration and provides valuable molecular markers for future research in duck production and breeding based on plumage coloration.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fanglu Zhao
- Department of Animal Science, Jiangxi Biological Vocational College, No. 608 Nanlian Road, Nanchang 330200, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianjie Lai
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huihuang Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weilong Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
7
|
Pan R, Hua T, Guo Q, Bai H, Jiang Y, Wang Z, Bi Y, Chen G, Wu X, Chang G. Identification of SNPs in MITF associated with beak color of duck. Front Genet 2023; 14:1161396. [PMID: 37671042 PMCID: PMC10475569 DOI: 10.3389/fgene.2023.1161396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction: Beak color-a pigment-related trait-is an important feature of duck breeds. Recently, little research has addressed genetic mechanism of the beak colors in poultry, whereas the process and the regulation factors of melanin deposition have been well described. Methods: To investigate the genetic mechanism of beak colors, we conducted an integrated analysis of genomic selection signatures to identify a candidate site associated with beak color. For this, we used black-billed (Yiyang I meat duck synthetic line H1, H2, H3&HF) and yellow-billed ducks (Cherry Valley ducks and white feather Putian black duck). Quantitative real-time PCR and genotyping approaches were used to verify the function of the candidate site. Results: We identified 3,895 windows containing 509 genes. After GO and KEGG enrichment analysis, nine genes were selected. Ultimately, MITF was selected by comparing the genomic differentiation (FST). After loci information selection, 41 extreme significantly different loci were selected, which are all located in intron regions of MITF and are in almost complete linkage disequilibrium. Subsequently, the site ASM874695v1:10:g.17814522T > A in MITF was selected as the marker site. Furthermore, we found that MITF expression is significantly higher in black-beaked ducks than in yellow-beaked ducks of the F2 generation (p < 0.01). After genotyping, most yellow-billed individuals are found with homozygous variant; at the same time, there are no birds with homozygous variant in black-billed populations, while the birds with homozygous and heterozygous variant share the same proportion. Conclusion: MITF plays a very critical role in the melanogenesis and melanin deposition of duck beaks, which can effectively affect the beak color. The MITF site, ASM874695v1:10:g.17814522T > A could be selected as a marker site for the duck beak color phenotype.
Collapse
Affiliation(s)
- Rui Pan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tian Hua
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinsheng Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Zhang X, Zhu T, Wang L, Lv X, Yang W, Qu C, Li H, Wang H, Ning Z, Qu L. Genome-Wide Association Study Reveals the Genetic Basis of Duck Plumage Colors. Genes (Basel) 2023; 14:genes14040856. [PMID: 37107611 PMCID: PMC10137861 DOI: 10.3390/genes14040856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Plumage color is an artificially and naturally selected trait in domestic ducks. Black, white, and spotty are the main feather colors in domestic ducks. Previous studies have shown that black plumage color is caused by MC1R, and white plumage color is caused by MITF. We performed a genome-wide association study (GWAS) to identify candidate genes associated with white, black, and spotty plumage in ducks. Two non-synonymous SNPs in MC1R (c.52G>A and c.376G>A) were significantly related to duck black plumage, and three SNPs in MITF (chr13:15411658A>G, chr13:15412570T>C and chr13:15412592C>G) were associated with white plumage. Additionally, we also identified the epistatic interactions between causing loci. Some ducks with white plumage carry the c.52G>A and c.376G>A in MC1R, which also compensated for black and spotty plumage color phenotypes, suggesting that MC1R and MITF have an epistatic effect. The MITF locus was supposed to be an upstream gene to MC1R underlying the white, black, and spotty colors. Although the specific mechanism remains to be further clarified, these findings support the importance of epistasis in plumage color variation in ducks.
Collapse
Affiliation(s)
- Xinye Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Tao Zhu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing 100107, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang 236037, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumchi 830052, China
| | - Huie Wang
- College of Animal Science, Tarim University, Alar 843300, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
9
|
Xing L, Liu S, Zhang L, Yang H, Sun L. MITF Contributes to the Body Color Differentiation of Sea Cucumbers Apostichopus japonicus through Expression Differences and Regulation of Downstream Genes. BIOLOGY 2022; 12:biology12010001. [PMID: 36671694 PMCID: PMC9854957 DOI: 10.3390/biology12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Melanin, which is a pigment produced in melanocytes, is an important contributor to sea cucumber body color. MITF is one of the most critical genes in melanocyte development and melanin synthesis pathways. However, how MITF regulates body color and differentiation in sea cucumbers is poorly understood. In this study, we analyzed the expression level and location of MITF in white, purple, and green sea cucumbers and identified the genes regulated by MITF using chromatin immunoprecipitation followed by sequencing. The mRNA and protein expression levels of MITF were all highest in purple morphs and lowest in white morphs. In situ hybridization indicated that MITF mRNA were mainly expressed in the epidermis. We also identified 984, 732, and 1191 peaks of MITF binding in green, purple, and white sea cucumbers, which were associated with 727, 557, and 887 genes, respectively. Our findings suggested that MITF contributed to the body color differentiation of green, purple, and white sea cucumbers through expression differences and regulation of downstream genes. These results provided a basis for future studies to determine the mechanisms underlying body color formation and provided insights into gene regulation in sea cucumbers.
Collapse
Affiliation(s)
- Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel./Fax: +86-532-8289-8610
| |
Collapse
|
10
|
Wang L, Yang L, Yang S, Jia Z, Cai J, Rong L, Wu X, Fan L, Gong Y, Li S. Identification of genes associated with feather color in Liancheng white duck using F ST analysis. Anim Genet 2022; 53:518-521. [PMID: 35670225 DOI: 10.1111/age.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Liancheng white duck has two phenotypic traits: white feather and black beak-black foot, but the genes controlling these phenotypic traits are unknown. The objective of this study is to identify various candidate genes related to the plumage of Liancheng white duck. This study used F2 population construction generated between white Kaiya duck and Liancheng white duck and FST analysis between the dominant and recessive loci associated with the Liancheng white duck white feather in order to identify specific gene regions. As per the feather color statistics of the F2 population, it is estimated that there are about three or four genes controlling the white feather of Liancheng white ducks, and the FST results showed that four significant signals were found on chromosomes 4, 12, 13, and 21. Further annotation of these regions led to the identification of five genes involved in the melanin pathway, namely, KIT, CLOCK, MITF, CEBPA, and DOK5. Among them, CEBPA and DOK5 might be affecting the white feather traits of Liancheng white duck by regulating the melanin production and its transfer to the feather. The results provide insightful understanding into the genetic mechanisms of white feather in Liancheng white duck.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liubin Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sendong Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zijia Jia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinping Cai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Rong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueying Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingzhi Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanchang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - ShiJun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Lin R, Li J, Zhao F, Zhou M, Wang J, Xiao T. Transcriptome analysis of genes potentially associated with white and black plumage formation in Chinese indigenous ducks ( Anas platyrhynchos). Br Poult Sci 2022; 63:466-474. [PMID: 35094630 DOI: 10.1080/00071668.2022.2035676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Plumage colour is an important recognisable characteristic of duck (Anas platyrhynchos), but the coloration mechanisms remain largely unknown. To elucidate the molecular mechanisms underlying the formation of black and white plumage, the following study applied RNA sequencing (RNA-Seq) to catalogue the global gene expression profiles in the duck feather bulbs of black and white colours.2. Black feather bulbs were collected from Putian Black ducks (B-PTB) and black Longsheng Jade-green ducks (B-LS), while white feather bulbs were collected from Putian White ducks (W-PTW), Putian Black ducks (W-PTB) and Longsheng Jade-green ducks (W-LS). Sixteen cDNA libraries were constructed and sequenced for transcriptional analysis. Three comparison groups were employed to analyse differentially expressed genes (DEGs), including W-PTB versus B-PTB, W-PTW versus B-PTB and W-LS versus B-LS.3. The results showed 180 DEGs between W-PTB and B-PTB, 303 DEGs between W-PTW and B-PTB, and 108 DEGs between W-LS and B-LS. Further analysis showed that 18 DEGs were directly involved in the pigmentation process and melanogenesis signalling pathway. Additionally, the distribution of DEGs varied amongst groups whereby ASIP appeared only in the W-LS versus B-LS group, GNAI1 and ZEB2 appeared only in the W-PTW versus B-PTB group, and KITLG, EDN3 and FZD4 appeared only in W-PTB versus B-PTB.4. The findings suggested that the mechanism of feather albinism may differ between duck breeds. This study provided new information for discovering genes that are important for feather pigmentation and helps elucidate molecular mechanisms involved in black and white plumage in ducks.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaquan Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fanglu Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mai Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junhui Wang
- The Animal Husbandry Station in Fujian Province, Fuzhou, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Yuan C, Mao J, Sun H, Wang Y, Guo M, Wang X, Tian Y, Hao Z, Ding J, Chang Y. Genome-wide DNA methylation profile changes associated with shell colouration in the Yesso scallop (Patinopecten yessoensis) as measured by whole-genome bisulfite sequencing. BMC Genomics 2021; 22:740. [PMID: 34649514 PMCID: PMC8515700 DOI: 10.1186/s12864-021-08055-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mollusca, a phylum of highly rich species, possess vivid shell colours, but the underlying molecular mechanism remains to be elucidated. DNA methylation, one of the most common epigenetic modifications in eukaryotes, is believed to play a vital role in various biological processes. However, analysis of the effects of DNA methylation on shell colouration has rarely been performed in molluscs, limiting the current knowledge of the molecular mechanism of shell colour formation. RESULTS In the present study, to reveal the role of epigenetic regulation in shell colouration, WGBS, the "gold standard" of DNA methylation analysis, was first performed on the mantle tissues of Yesso scallops (Patinopecten yessoensis) with different shell colours (brown and white), and DNA methylomes at single-base resolution were generated. About 3% of cytosines were methylated in the genome of the Yesso scallop. A slight increase in mCG percentage and methylation level was found in brown scallops. Sequence preference of nearby methylated cytosines differed between high and low methylation level sites and between the brown- and white-shelled scallops. DNA methylation levels varied among the different genomic regions; all the detected regions in the brown group exhibited higher methylation levels than the white group. A total of 41,175 DMRs (differentially methylated regions) were detected between brown and white scallops. GO functions and pathways associated with the biosynthesis of melanin and porphyrins were significantly enriched for DMRs, among which several key shell colour-related genes were identified. Further, different correlations between mRNA expression levels and DNA methylation status were found in these genes, suggesting that DNA methylation regulates shell colouration in the Yesso scallop. CONCLUSIONS This study provides genome-wide DNA methylation landscapes of Yesso scallops with different shell colours, offering new insights into the epigenetic regulatory mechanism underlying shell colour.
Collapse
Affiliation(s)
- Changzi Yuan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Hongyan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yiying Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ming Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
13
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|