1
|
Knorr IJ, Tix L, Liu W, Talbot SR, Schulz M, Bell L, Kögel B, Tolba R, Ernst L. Refinement in Post-Operative Care for Orthopaedic Models: Implementing a Sheep Walking Cast (SWC) for Effective Tibial Fracture Management. Biomedicines 2024; 12:343. [PMID: 38397945 PMCID: PMC10886840 DOI: 10.3390/biomedicines12020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
In the healthcare system, lower leg fractures remain relevant, incurring costs related to surgical treatment, hospitalization, and rehabilitation. The duration of treatment may vary depending on the individual case and its severity. Casting as a post-surgical fracture treatment is a common method in human and experimental veterinary medicine. Despite the high importance of sheep in preclinical testing materials for osteosynthesis, there is no standardised cast system ensuring proper stabilisation and functionality of hind limbs during the healing of tibia fractures or defects. Existing treatment approaches for tibial osteosynthesis in laboratory animal science include sling hanging, external fixators, or former Achilles tendon incision. These methods restrict animal movement for 4-6 weeks, limit species-typical behaviour, and impact social interactions. Our pilot study introduces a Standardised Walking Cast (SWC) for sheep, enabling immediate physiological movement post surgery. Seven Rhone sheep (female, 63.5 kg ± 6.45 kg) each with a single tibia defect (6 mm mechanical drilled defect) underwent SWC application for 4 weeks after plate osteosynthesis. The animals bore weight on their operated leg from day one, exhibiting slight lameness (grade 1-2 out of 5). Individual step lengths showed good uniformity (average deviation: 0.89 cm). Group housing successfully started on day three after surgery. Weekly X-rays and cast changes ensured proper placement, depicting the healing process. This study demonstrates the feasibility of using an SWC for up to 72 kg of body weight without sling hanging via ceiling mounting or external fixation techniques. Allowing species-typical movement and social behaviour can significantly improve the physiological behaviour of sheep in experiments, contributing to refinement.
Collapse
Affiliation(s)
- Ivonne Jeanette Knorr
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Leonie Tix
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Wenjia Liu
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Steven R. Talbot
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, 30625 Hannover, Germany;
| | - Mareike Schulz
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Laura Bell
- Audiovisual Media Center, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| | - Babette Kögel
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Rene Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Lisa Ernst
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| |
Collapse
|
2
|
Chua K, Khan I, Malhotra R, Zhu D. Additive Manufacturing and 3D Printing of Metallic Biomaterials. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
3
|
Basu P, Saha N, Alexandrova R, Saha P. Calcium Phosphate Incorporated Bacterial Cellulose-Polyvinylpyrrolidone Based Hydrogel Scaffold: Structural Property and Cell Viability Study for Bone Regeneration Application. Polymers (Basel) 2019; 11:polym11111821. [PMID: 31698725 PMCID: PMC6918328 DOI: 10.3390/polym11111821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022] Open
Abstract
This work focuses on the analysis of structural and functional properties of calcium phosphate (CaP) incorporated bacterial cellulose (BC)-polyvinylpyrrolidone (PVP) based hydrogel scaffolds referred to as “CaP/BC-PVP”. CaP is incorporated in the scaffolds in the form of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) in different concentrations (β-TCP: HA (w/w) = 20:80, 40:60, and 50:50). The scaffolds were characterized on the basis of porosity, thermal, biodegradation, mechanical, and cell viability/cytocompatibility properties. The structural properties of all the hydrogel scaffolds show significant porosity. The biodegradation of “CaP/BC-PVP” scaffold was evaluated following hydrolytic degradation. Weight loss profile, pH change, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) study confirm the significant degradability of the scaffolds. It is observed that a 50:50_CaP/BC-PVP scaffold has the highest degree of degradation. On the other hand, the compressive strengths of CaP/BC-PVP hydrogel scaffolds are found between 0.21 to 0.31 MPa, which is comparable with the human trabecular bone. The cell viability study is performed with a human osteosarcoma Saos-2 cell line, where significant cell viability is observed in all the hydrogel scaffolds. This indicated their ability to facilitate cell growth and cell proliferation. Considering all these substantial properties, CaP/BC-PVP hydrogel scaffolds can be suggested for detailed investigation in the context of bone regeneration application.
Collapse
Affiliation(s)
- Probal Basu
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlín, Czech Republic; (P.B.); (P.S.)
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlín, Czech Republic; (P.B.); (P.S.)
- Correspondence: ; Tel.: +420-57603-8156
| | - Radostina Alexandrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Petr Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlín, Czech Republic; (P.B.); (P.S.)
| |
Collapse
|