1
|
Lee CH, Hsu KW, Hsieh YY, Li WT, Long Y, Lin CY, Chen SH. Unveiling IL6R and MYC as Targeting Biomarkers in Imatinib-Resistant Chronic Myeloid Leukemia through Advanced Non-Invasive Apoptosis Detection Sensor Version 2 Detection. Cells 2024; 13:616. [PMID: 38607055 PMCID: PMC11011921 DOI: 10.3390/cells13070616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
The management of chronic myelogenous leukemia (CML) has seen significant progress with the introduction of tyrosine kinase inhibitors (TKIs), particularly Imatinib. However, a notable proportion of CML patients develop resistance to Imatinib, often due to the persistence of leukemia stem cells and resistance mechanisms independent of BCR::ABL1 This study investigates the roles of IL6R, IL7R, and MYC in Imatinib resistance by employing CRISPR/Cas9 for gene editing and the Non-Invasive Apoptosis Detection Sensor version 2 (NIADS v2) for apoptosis assessment. The results indicate that Imatinib-resistant K562 cells (K562-IR) predominantly express IL6R, IL7R, and MYC, with IL6R and MYC playing crucial roles in cell survival and sensitivity to Imatinib. Conversely, IL7R does not significantly impact cytotoxicity, either alone or in combination with Imatinib. Further genetic editing experiments confirm the protective functions of IL6R and MYC in K562-IR cells, suggesting their potential as therapeutic targets for overcoming Imatinib resistance in CML. This study contributes to understanding the mechanisms of Imatinib resistance in CML, proposing IL6R and MYC as pivotal targets for therapeutic strategies. Moreover, the utilization of NIADS v2 enhances our capability to analyze apoptosis and drug responses, contributing to a deeper understanding of CML pathogenesis and treatment options.
Collapse
MESH Headings
- Humans
- Apoptosis
- Biomarkers
- Drug Resistance, Neoplasm
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Receptors, Interleukin-6
- Proto-Oncogene Proteins c-myc
Collapse
Affiliation(s)
- Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 23561, Taiwan;
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 23561, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan;
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City 40402, Taiwan
- Program for Cancer Biology and Drug Discovery, Drug Development Center, China Medical University, Taichung City 40402, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ting Li
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Yuqing Long
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Chun-Yu Lin
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Shu-Huey Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
2
|
Yue J, Qi YF, Zhang WB, Liu SH, Chen H, Li ZZ, Wu HF. Single Nucleotide Polymorphisms Mutation of Tropoelastin Gene Affects Tropoelastin mRNA and Elastin Expressions in Human Aortic Smooth Muscle Cells. DNA Cell Biol 2023; 42:735-745. [PMID: 38011321 DOI: 10.1089/dna.2023.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
We aimed to explore the effects of single nucleotide polymorphisms (SNPs) in tropoelastin gene on tropoelastin mRNA and elastin expressions in human aortic smooth muscle cells (HASMCs). Two SNP loci, rs2071307 (G/A) and rs1785598 (G/C), were selected to construct recombinant lentivirus vectors carrying wild-type and mutant tropoelastin gene. Recombinant plasmids including pWSLV-02-ELN, pWSLV-02-ELN-mut1, and pWSLV-02-ELN-mut2 were constructed, before being amplified by polymerase chain reaction (PCR) and sequenced. The prepared plasmids and the packaging plasmids (pVSV-G and psPAX2) were cotransfected into HEK293T cells to obtain recombinant lentiviruses carrying tropoelastin gene. Afterward, HASMCs were infected with recombinant lentiviruses, and the positive cells sorted by flow cytometry were amplified. Four stable HASMCs cell lines including pWSLV-02-ELN, pWSLV-02-ELN-mut1, pWSLV-02-ELN-mut2, and pWSLV-02 vector were constructed. The expressions of tropoelastin mRNA and elastin in HASMCs were detected by real-time quantitative reverse transcription-PCR and western blot, respectively. Recombinant plasmids including pWSLV-02-ELN-mut1, pWSLV-02-ELN-mut2, and pWSLV-02-ELN were successfully constructed. Recombinant lentiviruses carrying tropoelastin gene were obtained via lentivirus packaging. After infection for 24 h, 3 days and 5 days in HASMCs, tropoelastin mRNA expressions in pWSLV-02-ELN-mut1 and pWSLV-02-ELN-mut2 groups were significantly lower than that of pWSLV-02-ELN group. Besides, after infection for 24 h, 3 days, and 5 days, elastin levels in pWSLV-02-ELN-mut1 and pWSLV-02-ELN-mut2 groups were significantly lower than that in pWSLV-02-ELN group. In conclusion, SNPs mutation of tropoelastin gene affected the expression of tropoelastin mRNA and elastin, suggesting that the polymorphisms of rs2071307 and rs17855988 in tropoelastin gene might be important factors for AD development.
Collapse
Affiliation(s)
- Jie Yue
- Department of Vascular Surgery, Hainan General Hospital, Haikou, People's Republic of China
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - You-Fei Qi
- Department of Vascular Surgery, Hainan General Hospital, Haikou, People's Republic of China
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Wen-Bo Zhang
- Department of Vascular Surgery, Hainan General Hospital, Haikou, People's Republic of China
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Sa-Hua Liu
- Department of Vascular Surgery, Hainan General Hospital, Haikou, People's Republic of China
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Hao Chen
- Department of Vascular Surgery, Hainan General Hospital, Haikou, People's Republic of China
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Zhen-Zhen Li
- Department of Vascular Surgery, Hainan General Hospital, Haikou, People's Republic of China
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Hong-Fei Wu
- Department of Vascular Surgery, Hainan General Hospital, Haikou, People's Republic of China
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| |
Collapse
|
3
|
Urzì O, Olofsson Bagge R, Crescitelli R. The dark side of foetal bovine serum in extracellular vesicle studies. J Extracell Vesicles 2022; 11:e12271. [PMID: 36214482 PMCID: PMC9549727 DOI: 10.1002/jev2.12271] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) have been shown to be involved in cell-cell communication and to take part in both physiological and pathological processes. Thanks to their exclusive cargo, which includes proteins, lipids, and nucleic acids from the originating cells, they are gaining interest as potential biomarkers of disease. In recent years, their appealing features have been fascinating researchers from all over the world, thus increasing the number of in vitro studies focused on EV release, content, and biological activities. Cultured cell lines are the most-used source of EVs; however, the EVs released in cell cultures are influenced by the cell culture conditions, such as the use of foetal bovine serum (FBS). FBS is the most common supplement for cell culture media, but it is also a source of contaminants, such as exogenous bovine EVs, RNA, and protein aggregates, that can contaminate the cell-derived EVs and influence their cargo composition. The presence of FBS contaminants in cell-derived EV samples is a well-known issue that limits the clinical applications of EVs, thus increasing the need for standardization. In this review, we will discuss the pros and cons of using FBS in cell cultures as a source of EVs, as well as the protocols used to remove contaminants from FBS.
Collapse
Affiliation(s)
- Ornella Urzì
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational MedicineDepartment of SurgeryInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of BiomedicineNeurosciences and Advanced Diagnostics (Bi.N.D)University of PalermoPalermoItaly
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational MedicineDepartment of SurgeryInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of SurgerySahlgrenska University HospitalRegion Västra GötalandGothenburgSweden
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational MedicineDepartment of SurgeryInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
4
|
Yang L, Cui L, Ma S, Zuo Q, Huang Q. A Gene Transfer-Positive Cell Sorting System Utilizing Membrane-Anchoring Affinity Tag. Front Bioeng Biotechnol 2022; 10:930966. [PMID: 35782508 PMCID: PMC9244562 DOI: 10.3389/fbioe.2022.930966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Gene delivery efficiency is an essential limit factor in gene study and gene therapy, especially for cells that are hard for gene transfer. Here we develop an affinity cell sorting system that allows efficient enrichment of gene transfer-positive cells. The system expresses an enhanced green fluorescent protein (EGFP) fused with an N-terminal high-affinity Twin-Strep-Tag (TST) that will be anchored to the cell membrane at the out-surface through a glycosylphosphatidylinositol (GPI) membrane-anchoring structure. The EGFP permits microscopy and flow cytometry analysis of the gene transfer-positive cells, and the TST tag at the N terminal of EGFP allows efficient affinity sorting of the positive cells using Strep-Tactin magnetic beads. The cell sorting system enables efficient isolation of gene transfer-positive cells in a simple, convenient, and fast manner. Cell sorting on transfected K-562 cells resulted in a final positive cell percentage of up to 95.0% with a positive cell enrichment fold of 5.8 times. The applications in gene overexpression experiments could dramatically increase the gene overexpression fold from 10 times to 58 times, and in shRNA gene knockdown experiments, cell sorting increased the gene knockdown efficiency from 12% to 53%. In addition, cell sorting in CRISPR/Cas9 genome editing experiments allowed more significant gene modification, with an editing percentage increasing from 20% to 79%. The gene transfer-positive cell sorting system holds great potential for all gene transfer studies, especially on those hard-to-transfect cells.
Collapse
|
5
|
Abbasalipour M, Khosravi MA, Zeinali S, Khanahmad H, Azadmanesh K, Karimipoor M. Lentiviral vector containing beta-globin gene for beta thalassemia gene therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kheyrandish S, Rastgar A, Hamidi M, Sajjadi SM, Sarab GA. Evaluation of anti-tumor effect of the exopolysaccharide from new cold-adapted yeast, Rhodotorula mucilaginosa sp. GUMS16 on chronic myeloid leukemia K562 cell line. Int J Biol Macromol 2022; 206:21-28. [PMID: 35217074 DOI: 10.1016/j.ijbiomac.2022.02.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022]
Abstract
Recently, the development and application of fungal exopolysaccharides (EPS) as natural biopolymers are on the rise. The present study is based on the investigation of possible antiproliferative and antioxidant activities of EPS from the Rhodotorula mucilaginosa sp. GUMS16 on BCR-ABL positive cells (K562). The cytotoxicity, colony formation assays lactate and dehydrogenase (LDH) activity were performed to assess the possible cancer cell death. To elucidate the underlying antiproliferative mechanism of the EPS, cell cycle analysis following real-time PCR (gene expression assessment) were evaluated. The results indicated that, the EPS with an IC50 dose of 1500 μg/ml, reduced the viability of K562 cells without having toxic effects on normal cells as well as decrease in size and number of colonies in EPS-treated group (p < 0.0001). The increase of LDH was 2.75 times more than the control (p < 0.0001). Gene expression revealed up- and down-regulation of apoptotic and anti-apoptotic genes in EPS group compared with the control. Moreover, the DPPH scavenging activity of the EPS in treated cells was significantly higher than the control group (p < 0.0001). Taken together, we concluded that the EPS from GUMS16 strain is able to inhibit the growth of K562 cells besides having antioxidant activities.
Collapse
Affiliation(s)
- Setare Kheyrandish
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhossein Rastgar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran; BioMatter-Biomass Transformation Lab (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Uhlmann C, Kuhn LM, Tigges J, Fritsche E, Kahlert UD. Efficient Modulation of TP53 Expression in Human Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2021; 52:e102. [PMID: 31883435 DOI: 10.1002/cpsc.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TP53 point mutations are found in 50% of all cancers and seem to play an important role in cancer pathogenesis. Thus, human induced pluripotent stem cells (hiPSCs) overexpressing mutant TP53 are a valuable tool for the generation of in vitro models of cancer stem cells or for in vivo xenograft models. Here, we describe a protocol for the alteration of gene expression in hiPSCs via overexpression of a mutant form of the TP53 (R249S) gene using lentiviral transduction. A high amount of TP53 protein is detected 1 week after transduction and antibiotic selection. Differentiation of transduced hiPSCs gives insight into better understanding cancer formation in different tissues and may be a useful tool for genetic or pharmacologic screening assays. © 2019 The Authors. Basic Protocol 1: Production and concentration of third-generation lentivirus Support Protocol 1: Cloning of gene of interest into modulation vector Support Protocol 2: Preparation of DMEM GlutaMAX™ with 10% fetal bovine serum and 1% penicillin-streptomycin Basic Protocol 2: Transduction of human induced pluripotent stem cells and selection of positively transfected cells Support Protocol 3: Preparation of Matrigel® -coated plates Support Protocol 4: Preparation of mTeSR™1 medium.
Collapse
Affiliation(s)
- Constanze Uhlmann
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lisa-Maria Kuhn
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine University, Düsseldorf, Germany
| | - Julia Tigges
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ulf Dietrich Kahlert
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| |
Collapse
|
8
|
Sadaf S, Nagarkoti S, Awasthi D, Singh AK, Srivastava RN, Kumar S, Barthwal MK, Dikshit M. nNOS induction and NOSIP interaction impact granulopoiesis and neutrophil differentiation by modulating nitric oxide generation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119018. [PMID: 33771575 DOI: 10.1016/j.bbamcr.2021.119018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), a versatile free radical and a signalling molecule, plays an important role in the haematopoiesis, inflammation and infection. Impaired proliferation and differentiation of myeloid cells lead to malignancies and Hematopoietic deficiencies. This study was aimed to define the role of nNOS derived NO in neutrophil differentiation (in-vitro) and granulopoiesis (in-vivo) using multipronged approaches. The results obtained from nNOS over-expressing K562 cells revealed induction in C/EBPα derived neutrophil differentiation as evident by an increase in the expression of neutrophil specific cell surface markers, genes, transcription factors and functionality. nNOS mediated response also involved G-CSFR-STAT-3 axis during differentiation. Consistent increase in NO generation was observed during neutrophil differentiation of mice and human CD34+ HSPCs. Furthermore, granulopoiesis was abrogated in the nNOS inhibitor treated mice, depicting a decrease in the numbers of BM mature and progenitor neutrophils. Likewise, in vitro inhibition of nNOS in human CD34+ HSPCs indicated an indispensable role of nNOS in neutrophil differentiation. Expression of nNOS inhibitory protein, NOSIP was significantly and consistently decreased during the final stage of differentiation and was linked with the augmentation in NO release. Moreover, neutrophils from CML patients had more NOSIP and less NO generation as compared to the PMNs from healthy individuals. The present study thus indicates a critical role of nNOS, and its interaction with NOSIP during neutrophil differentiation. The study also highlights the importance of nNOS in the neutrophil progenitor proliferation and differentiation warranting investigations to assess its role in the haematopoiesis-related disorders.
Collapse
Affiliation(s)
- Samreen Sadaf
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana 121001, India.
| |
Collapse
|
9
|
Gao X, Ding J, Long Q, Zhan C. Virus-mimetic systems for cancer diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1692. [PMID: 33354937 DOI: 10.1002/wnan.1692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Over past decades, various strategies have been developed to enhance the delivery efficiency of therapeutics and imaging agents to tumor tissues. However, the therapeutic outcome of tumors to date have not been significantly improved, which can be partly attributed to the weak targeting ability, fast elimination, and low stability of conventional delivery systems. Viruses are the most efficient agents for gene transfer, serving as a valuable source of inspiration for designing nanoparticle-based delivery systems. Based on the properties of viruses, including well-defined geometry, precise composition, easy modification, stable construction, and specific infection, researchers attempt to design biocompatible delivery vectors by mimicking virus assembly and using the vector system to selectively concentrate drugs or imaging probes in tumors with mitigated toxicity and improved efficacy. In this review, we introduce common viruses features and provide an overview of various virus-mimetic strategies for cancer therapy and diagnosis. The challenges faced by virus-mimetic systems are also discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xihui Gao
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Junqiang Ding
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai, China
| | - Qianqian Long
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Changyou Zhan
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ, Quintana-Bustamante O, Garcia-Silva S, Carcaboso AM, Petazzi P, Bueno C, Mora J, Peinado H, Segovia JC, Menendez P, Rodriguez-Perales S. In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun 2020. [PMID: 33033246 DOI: 10.1038/s41467-020-18875-x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fusion oncogenes (FOs) are common in many cancer types and are powerful drivers of tumor development. Because their expression is exclusive to cancer cells and their elimination induces cell apoptosis in FO-driven cancers, FOs are attractive therapeutic targets. However, specifically targeting the resulting chimeric products is challenging. Based on CRISPR/Cas9 technology, here we devise a simple, efficient and non-patient-specific gene-editing strategy through targeting of two introns of the genes involved in the rearrangement, allowing for robust disruption of the FO specifically in cancer cells. As a proof-of-concept of its potential, we demonstrate the efficacy of intron-based targeting of transcription factors or tyrosine kinase FOs in reducing tumor burden/mortality in in vivo models. The FO targeting approach presented here might open new horizons for the selective elimination of cancer cells.
Collapse
Affiliation(s)
- M Martinez-Lage
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - R Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain. .,Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain.
| | - P Puig-Serra
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - P Moreno-Gaona
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - M C Martin
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - F J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - O Quintana-Bustamante
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - S Garcia-Silva
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - A M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - P Petazzi
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - C Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - J Mora
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - H Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - J C Segovia
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - P Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys, 08010, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - S Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
11
|
Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ, Quintana-Bustamante O, Garcia-Silva S, Carcaboso AM, Petazzi P, Bueno C, Mora J, Peinado H, Segovia JC, Menendez P, Rodriguez-Perales S. In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun 2020; 11:5060. [PMID: 33033246 PMCID: PMC7544871 DOI: 10.1038/s41467-020-18875-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Fusion oncogenes (FOs) are common in many cancer types and are powerful drivers of tumor development. Because their expression is exclusive to cancer cells and their elimination induces cell apoptosis in FO-driven cancers, FOs are attractive therapeutic targets. However, specifically targeting the resulting chimeric products is challenging. Based on CRISPR/Cas9 technology, here we devise a simple, efficient and non-patient-specific gene-editing strategy through targeting of two introns of the genes involved in the rearrangement, allowing for robust disruption of the FO specifically in cancer cells. As a proof-of-concept of its potential, we demonstrate the efficacy of intron-based targeting of transcription factors or tyrosine kinase FOs in reducing tumor burden/mortality in in vivo models. The FO targeting approach presented here might open new horizons for the selective elimination of cancer cells.
Collapse
Affiliation(s)
- M Martinez-Lage
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - R Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain.
| | - P Puig-Serra
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - P Moreno-Gaona
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - M C Martin
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - F J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - O Quintana-Bustamante
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - S Garcia-Silva
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - A M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - P Petazzi
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - C Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - J Mora
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - H Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - J C Segovia
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - P Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys, 08010, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - S Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
12
|
Yah CS, Simate GS. Engineered nanoparticle bio-conjugates toxicity screening: The xCELLigence cells viability impact. ACTA ACUST UNITED AC 2020; 10:195-203. [PMID: 32793442 PMCID: PMC7416007 DOI: 10.34172/bi.2020.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Introduction: The vast diverse products and applications of engineered nanoparticle bio-conjugates (ENPBCs) are increasing, and thus flooding the-markets. However, the data to support risk estimates of ENPBC are limited. While it is important to assess the potential benefits, acceptability and uptake, it is equally important to understand where ENPBCs safety is and how to expand and affirm consumer security concerns. Methods: Online articles were extracted from 2013 to 2016 that pragmatically used xCELLigence real-time cell analysis (RTCA) technology to describe the in-vitro toxicity of ENPBCs. The xCELLigence is a +noninvasive in vitro toxicity monitoring process that mimics exact continuous cellular bio-responses in real-time settings. On the other hand, articles were also extracted from 2008 to 2016 describing the in vivo animal models toxicity of ENPBCs with regards to safety outcomes. Results: Out of 32 of the 121 (26.4%) articles identified from the literature, 23 (71.9%) met the in-vitro xCELLigence and 9(28.1%) complied with the in vivo animal model toxicity inclusion criteria. Of the 23 articles, 4 of them (17.4%) had no size estimation of ENPBCs. The xCELLigence technology provided information on cell interactions, viability, and proliferation process. Eighty-three (19/23) of the in vitro xCELLigence technology studies described ENPBCs as nontoxic or partially nontoxic materials. The in vivo animal model provided further toxicity information where 1(1/9) of the in vivo animal model studies indicated potential animal toxicity while the remaining results recommended ENPPCs as potential candidates for drug therapy though with limited information on toxicity. Conclusion: The results showed that the bioimpacts of ENPBCs either at the in vitro or at in vivo animal model levels are still limited due to insufficient information and data. To keep pace with ENPBCs biomedical products and applications, in vitro, in vivo assays, clinical trials and long-term impacts are needed to validate their usability and uptake. Besides, more real-time ENPBCs-cell impact analyses using xCELLigence are needed to provide significant data and information for further in vivo testing.
Collapse
Affiliation(s)
- Clarence S Yah
- Implementation Science Unit, Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, South Africa.,School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Geoffrey S Simate
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Radhakrishnan H, Javitz HS, Bhatnagar P. Lentivirus Manufacturing Process for Primary T-Cell Biofactory Production. ACTA ACUST UNITED AC 2020; 4:e1900288. [PMID: 32390316 DOI: 10.1002/adbi.201900288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
A process for maximizing the titer of lentivirus particles, deemed to be a necessity for transducing primary cells, is developed. Lentivirus particles, with a set of transgenes encoding an artificial cell-signaling pathway, are used to transform primary T cells as vectors for calibrated synthesis of desired proteins in situ, that is, T-cell biofactory cells. The process is also used to generate primary T cells expressing antigen-specific chimeric antigen receptors, that is, CAR T cells. The two differently engineered primary T cells are expanded and validated for their respective functions, that is, calibrated synthesis of desired proteins upon engaging the target cells, which is specific for the T-cell biofactory cells, and cytolysis of the target cells common to both types of cells. The process is compliant with current Good Manufacturing Practices and can be used to support the scale-up for clinical translation.
Collapse
Affiliation(s)
| | - Harold S Javitz
- Education Division, SRI International, Menlo Park, CA, 94025, USA
| | | |
Collapse
|