1
|
Nguyen T, Vennatt J, Downs L, Surabhi V, Stanietzky N. Advanced Imaging of Hepatocellular Carcinoma: A Review of Current and Novel Techniques. J Gastrointest Cancer 2024; 55:1469-1484. [PMID: 39158837 DOI: 10.1007/s12029-024-01094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary carcinoma arising from the liver. Although HCC can arise de novo, the vast majority of cases develop in the setting of chronic liver disease. Hepatocarcinogenesis follows a well-studied process during which chronic inflammation and cellular damage precipitate cellular and genetic aberrations, with subsequent propagation of precancerous and cancerous lesions. Surveillance of individuals at high risk of HCC, early diagnosis, and individualized treatment are keys to reducing the mortality associated with this disease. Radiological imaging plays a critical role in the diagnosis and management of these patients. HCC is a unique cancer in that it can be diagnosed with confidence by imaging that meets all radiologic criteria, obviating the risks associated with tissue sampling. This article discusses conventional and emerging imaging techniques for the evaluation of HCC.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jaijo Vennatt
- Department of Diagnostic Radiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Lincoln Downs
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Venkateswar Surabhi
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Nir Stanietzky
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Shen X, Wu J, Su J, Yao Z, Huang W, Zhang L, Jiang Y, Yu W, Li Z. Revisiting artificial intelligence diagnosis of hepatocellular carcinoma with DIKWH framework. Front Genet 2023; 14:1004481. [PMID: 37007970 PMCID: PMC10064216 DOI: 10.3389/fgene.2023.1004481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high morbidity and fatality rate. Traditional diagnostic methods for HCC are primarily based on clinical presentation, imaging features, and histopathology. With the rapid development of artificial intelligence (AI), which is increasingly used in the diagnosis, treatment, and prognosis prediction of HCC, an automated approach to HCC status classification is promising. AI integrates labeled clinical data, trains on new data of the same type, and performs interpretation tasks. Several studies have shown that AI techniques can help clinicians and radiologists be more efficient and reduce the misdiagnosis rate. However, the coverage of AI technologies leads to difficulty in which the type of AI technology is preferred to choose for a given problem and situation. Solving this concern, it can significantly reduce the time required to determine the required healthcare approach and provide more precise and personalized solutions for different problems. In our review of research work, we summarize existing research works, compare and classify the main results of these according to the specified data, information, knowledge, wisdom (DIKW) framework.
Collapse
Affiliation(s)
- Xiaomin Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinxin Wu
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Junwei Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhenyu Yao
- School of Computer Science, King’s College London, London, United Kingdom
| | - Wei Huang
- Department of Gastroenterology II, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Li Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yiheng Jiang
- Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhao Li
- School of Computer Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Deng Y, Jia X, Yu G, Hou J, Xu H, Ren A, Wang Z, Yang D, Yang Z. Can a proposed double branch multimodality-contribution-aware TripNet improve the prediction performance of the microvascular invasion of hepatocellular carcinoma based on small samples? Front Oncol 2022; 12:1035775. [PMID: 36387069 PMCID: PMC9640917 DOI: 10.3389/fonc.2022.1035775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVES To evaluate the potential improvement of prediction performance of a proposed double branch multimodality-contribution-aware TripNet (MCAT) in microvascular invasion (MVI) of hepatocellular carcinoma (HCC) based on a small sample. METHODS In this retrospective study, 121 HCCs from 103 consecutive patients were included, with 44 MVI positive and 77 MVI negative, respectively. A MCAT model aiming to improve the accuracy of deep neural network and alleviate the negative effect of small sample size was proposed and the improvement of MCAT model was verified among comparisons between MCAT and other used deep neural networks including 2DCNN (two-dimentional convolutional neural network), ResNet (residual neural network) and SENet (squeeze-and-excitation network), respectively. RESULTS Through validation, the AUC value of MCAT is significantly higher than 2DCNN based on CT, MRI, and both imaging (P < 0.001 for all). The AUC value of model with single branch pretraining based on small samples is significantly higher than model with end-to-end training in CT branch and double branch (0.62 vs 0.69, p=0.016, 0.65 vs 0.83, p=0.010, respectively). The AUC value of the double branch MCAT based on both CT and MRI imaging (0.83) was significantly higher than that of the CT branch MCAT (0.69) and MRI branch MCAT (0.73) (P < 0.001, P = 0.03, respectively), which was also significantly higher than common-used ReNet (0.67) and SENet (0.70) model (P < 0.001, P = 0.005, respectively). CONCLUSION A proposed Double branch MCAT model based on a small sample can improve the effectiveness in comparison to other deep neural networks or single branch MCAT model, providing a potential solution for scenarios such as small-sample deep learning and fusion of multiple imaging modalities.
Collapse
Affiliation(s)
- Yuhui Deng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Medical Imaging Division, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Xibin Jia
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Gaoyuan Yu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Jian Hou
- Department of Radiology, The People’s Hospital of Jimo.Qingdao, Qingdao, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ahong Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Jia X, Sun Z, Mi Q, Yang Z, Yang D. A Multimodality-Contribution-Aware TripNet for Histologic Grading of Hepatocellular Carcinoma. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2003-2016. [PMID: 33974545 DOI: 10.1109/tcbb.2021.3079216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is a type of primary liver malignant tumor with a high recurrence rate and poor prognosis even undergoing resection or transplantation. Accurate discrimination of the histologic grades of HCC plays a critical role in the management and therapy of HCC patients. In this paper, we discuss a deep learning-based diagnostic model for HCC histologic grading with multimodal Magnetic Resonance Imaging (MRI) images to overcome the problem of limited well-annotated data and extract the discriminated fusion feature referring to the clinical diagnosis experience of radiologists. Accordingly, we propose a novel Multimodality-Contribution-Aware TripNet (MCAT) based on the metric learning and the attention-aware weighted multimodal fusion. The novelty of the method lies in the multimodality small-shot learning architecture designation and the multimodality adaptive weighted computing scheme. The comprehensive experiments are done on the clinic dataset with the well-annotation of lesion location by the professional radiologist. The experimental results show that our proposed MCAT is not only able to achieve acceptable quantitative measuring of HCC histologic grading based on the MRI sequences with small cases but also outperforms previous models in HCC histologic grading, reaching an accuracy of 84 percent, a sensitivity of 87 percent and precision of 89 percent.
Collapse
|
5
|
Río Bártulos C, Senk K, Schumacher M, Plath J, Kaiser N, Bade R, Woetzel J, Wiggermann P. Assessment of Liver Function With MRI: Where Do We Stand? Front Med (Lausanne) 2022; 9:839919. [PMID: 35463008 PMCID: PMC9018984 DOI: 10.3389/fmed.2022.839919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease and hepatocellular carcinoma (HCC) have become a global health burden. For this reason, the determination of liver function plays a central role in the monitoring of patients with chronic liver disease or HCC. Furthermore, assessment of liver function is important, e.g., before surgery to prevent liver failure after hepatectomy or to monitor the course of treatment. Liver function and disease severity are usually assessed clinically based on clinical symptoms, biopsy, and blood parameters. These are rather static tests that reflect the current state of the liver without considering changes in liver function. With the development of liver-specific contrast agents for MRI, noninvasive dynamic determination of liver function based on signal intensity or using T1 relaxometry has become possible. The advantage of this imaging modality is that it provides additional information about the vascular structure, anatomy, and heterogeneous distribution of liver function. In this review, we summarized and discussed the results published in recent years on this technique. Indeed, recent data show that the T1 reduction rate seems to be the most appropriate value for determining liver function by MRI. Furthermore, attention has been paid to the development of automated tools for image analysis in order to uncover the steps necessary to obtain a complete process flow from image segmentation to image registration to image analysis. In conclusion, the published data show that liver function values obtained from contrast-enhanced MRI images correlate significantly with the global liver function parameters, making it possible to obtain both functional and anatomic information with a single modality.
Collapse
Affiliation(s)
- Carolina Río Bártulos
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Karin Senk
- Institut für Röntgendiagnostik, Universtitätsklinikum Regensburg, Regensburg, Germany
| | | | - Jan Plath
- MeVis Medical Solutions AG, Bremen, Germany
| | | | | | | | - Philipp Wiggermann
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| |
Collapse
|
6
|
Wang SH, Du J, Xu H, Yang D, Ye Y, Chen Y, Zhu Y, Ba T, Yuan C, Yang ZH. Automatic discrimination of different sequences and phases of liver MRI using a dense feature fusion neural network: a preliminary study. Abdom Radiol (NY) 2021; 46:4576-4587. [PMID: 34057565 DOI: 10.1007/s00261-021-03142-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To develop and validate a dense feature fusion neural network (DFuNN) to automatically recognize different sequences and phases of liver magnetic resonance imaging (MRI). MATERIALS AND METHODS In total, 3869 sequences and phases from 384 liver MRI examinations, divided into training/validation (n = 2886 sequences from 287 patients) and test (n = 983 sequences from 97 patients) sets, were used in this retrospective study. Ten unenhanced sequences and enhanced phases were included. Manual sequence recognition, performed by two radiologists (20 and 10 years of experience) in a consensus reading, was used as the reference standard. The sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) were calculated to evaluate the performance of the DFuNN on an identical unseen test set. Finally, we evaluated the factors impacting the model precision. RESULTS A fusion block improved the performance of the DFuNN. DFuNN with a fusion block achieved good recognition performance for both complete and incomplete sequences and phases in the test set. The average sensitivity of recognition performance for complete sequence and phase inputs ranged from 88.06 to 100%, the average specificity ranged from 99.12 to 99.94%, and the median accuracy ranged from 98.02 to 99.95%. The DFuNN prediction accuracy for patients without cirrhosis were significantly higher than those for patients with cirrhosis (P = 0.0153). No significant difference was found in the accuracy across other factors. CONCLUSION DFuNN can automatically and accurately identify specific unenhanced MRI sequences and enhanced MRI phases.
Collapse
Affiliation(s)
- Shu-Hui Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, 100050, China
- Department of Radiology, Weihai Municipal Hospital, Weihai, Shandong Province, China
| | - Jing Du
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Yuxiang Ye
- Shanghai SenseTime Intelligent Technology Co. Ltd, Beijing, China
| | - Yinan Chen
- Shanghai SenseTime Intelligent Technology Co. Ltd, Beijing, China
| | - Yajing Zhu
- Shanghai SenseTime Intelligent Technology Co. Ltd, Beijing, China
| | - Te Ba
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Chunwang Yuan
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zheng-Han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
7
|
Feng B, Ma XH, Wang S, Cai W, Liu XB, Zhao XM. Application of artificial intelligence in preoperative imaging of hepatocellular carcinoma: Current status and future perspectives. World J Gastroenterol 2021; 27:5341-5350. [PMID: 34539136 PMCID: PMC8409162 DOI: 10.3748/wjg.v27.i32.5341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor in China. Preoperative diagnosis of HCC is challenging because of atypical imaging manifestations and the diversity of focal liver lesions. Artificial intelligence (AI), such as machine learning (ML) and deep learning, has recently gained attention for its capability to reveal quantitative information on images. Currently, AI is used throughout the entire radiomics process and plays a critical role in multiple fields of medicine. This review summarizes the applications of AI in various aspects of preoperative imaging of HCC, including segmentation, differential diagnosis, prediction of histopathology, early detection of recurrence after curative treatment, and evaluation of treatment response. We also review the limitations of previous studies and discuss future directions for diagnostic imaging of HCC.
Collapse
Affiliation(s)
- Bing Feng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Hong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuang Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Cai
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xia-Bi Liu
- Beijing Laboratory of Intelligent Information Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xin-Ming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Castaldo A, De Lucia DR, Pontillo G, Gatti M, Cocozza S, Ugga L, Cuocolo R. State of the Art in Artificial Intelligence and Radiomics in Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:1194. [PMID: 34209197 PMCID: PMC8307071 DOI: 10.3390/diagnostics11071194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The most common liver malignancy is hepatocellular carcinoma (HCC), which is also associated with high mortality. Often HCC develops in a chronic liver disease setting, and early diagnosis as well as accurate screening of high-risk patients is crucial for appropriate and effective management of these patients. While imaging characteristics of HCC are well-defined in the diagnostic phase, challenging cases still occur, and current prognostic and predictive models are limited in their accuracy. Radiomics and machine learning (ML) offer new tools to address these issues and may lead to scientific breakthroughs with the potential to impact clinical practice and improve patient outcomes. In this review, we will present an overview of these technologies in the setting of HCC imaging across different modalities and a range of applications. These include lesion segmentation, diagnosis, prognostic modeling and prediction of treatment response. Finally, limitations preventing clinical application of radiomics and ML at the present time are discussed, together with necessary future developments to bring the field forward and outside of a purely academic endeavor.
Collapse
Affiliation(s)
- Anna Castaldo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Davide Raffaele De Lucia
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy;
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
9
|
Alksas A, Shehata M, Saleh GA, Shaffie A, Soliman A, Ghazal M, Khelifi A, Khalifeh HA, Razek AA, Giridharan GA, El-Baz A. A novel computer-aided diagnostic system for accurate detection and grading of liver tumors. Sci Rep 2021; 11:13148. [PMID: 34162893 PMCID: PMC8222341 DOI: 10.1038/s41598-021-91634-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is a major cause of morbidity and mortality in the world. The primary goals of this manuscript are the identification of novel imaging markers (morphological, functional, and anatomical/textural), and development of a computer-aided diagnostic (CAD) system to accurately detect and grade liver tumors non-invasively. A total of 95 patients with liver tumors (M = 65, F = 30, age range = 34–82 years) were enrolled in the study after consents were obtained. 38 patients had benign tumors (LR1 = 19 and LR2 = 19), 19 patients had intermediate tumors (LR3), and 38 patients had hepatocellular carcinoma (HCC) malignant tumors (LR4 = 19 and LR5 = 19). A multi-phase contrast-enhanced magnetic resonance imaging (CE-MRI) was collected to extract the imaging markers. A comprehensive CAD system was developed, which includes the following main steps: i) estimation of morphological markers using a new parametric spherical harmonic model, ii) estimation of textural markers using a novel rotation invariant gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix (GLRLM) models, and iii) calculation of the functional markers by estimating the wash-in/wash-out slopes, which enable quantification of the enhancement characteristics across different CE-MR phases. These markers were subsequently processed using a two-stages random forest-based classifier to classify the liver tumor as benign, intermediate, or malignant and determine the corresponding grade (LR1, LR2, LR3, LR4, or LR5). The overall CAD system using all the identified imaging markers achieved a sensitivity of 91.8%±0.9%, specificity of 91.2%±1.9%, and F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1}$$\end{document}1 score of 0.91±0.01, using the leave-one-subject-out (LOSO) cross-validation approach. Importantly, the CAD system achieved overall accuracies of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$88\%\pm 5\%$$\end{document}88%±5%, 85%±2%, 78%±3%, 83%±4%, and 79%±3% in grading liver tumors into LR1, LR2, LR3, LR4, and LR5, respectively. In addition to LOSO, the developed CAD system was tested using randomly stratified 10-fold and 5-fold cross-validation approaches. Alternative classification algorithms, including support vector machine, naive Bayes classifier, k-nearest neighbors, and linear discriminant analysis all produced inferior results compared to the proposed two stage random forest classification model. These experiments demonstrate the feasibility of the proposed CAD system as a novel tool to objectively assess liver tumors based on the new comprehensive imaging markers. The identified imaging markers and CAD system can be used as a non-invasive diagnostic tool for early and accurate detection and grading of liver cancer.
Collapse
Affiliation(s)
- Ahmed Alksas
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Mohamed Shehata
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Gehad A Saleh
- Department of Radiology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Shaffie
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Ahmed Soliman
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Mohammed Ghazal
- College of Engineering, Abu Dhabi University, Abu Dhabi, UAE
| | - Adel Khelifi
- Computer Science and Information Technology, Abu Dhabi University, Abu Dhabi, UAE
| | | | - Ahmed Abdel Razek
- Department of Radiology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Guruprasad A Giridharan
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Ayman El-Baz
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
10
|
Nakai H, Fujimoto K, Yamashita R, Sato T, Someya Y, Taura K, Isoda H, Nakamoto Y. Convolutional neural network for classifying primary liver cancer based on triple-phase CT and tumor marker information: a pilot study. Jpn J Radiol 2021; 39:690-702. [PMID: 33689107 DOI: 10.1007/s11604-021-01106-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop convolutional neural network (CNN) models for differentiating intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) and predicting histopathological grade of HCC. MATERIALS AND METHODS Preoperative computed tomography and tumor marker information of 617 primary liver cancer patients were retrospectively collected to develop CNN models categorizing tumors into three categories: moderately differentiated HCC (mHCC), poorly differentiated HCC (pHCC), and ICC, where the histopathological diagnoses were considered as ground truths. The models processed manually cropped tumor with and without tumor marker information (two-input and one-input models, respectively). Overall accuracy was assessed using a held-out dataset (10%). Area under the curve, sensitivity, and specificity for differentiating ICC from HCCs (mHCC + pHCC), and pHCC from mHCC were also evaluated. We assessed two radiologists' performance without tumor marker information as references (overall accuracy, sensitivity, and specificity). The two-input model was compared with the one-input model and radiologists using permutation tests. RESULTS The overall accuracy was 0.61, 0.60, 0.55, 0.53 for the two-input model, one-input model, radiologist 1, and radiologist 2, respectively. For differentiating pHCC from mHCC, the two-input model showed significantly higher specificity than radiologist 1 (0.68 [95% confidence interval: 0.50-0.83] vs 0.45 [95% confidence interval: 0.27-0.63]; p = 0.04). CONCLUSION Our CNN model with tumor marker information showed feasibility and potential for three-class classification within primary liver cancer.
Collapse
Affiliation(s)
- Hirotsugu Nakai
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Koji Fujimoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Real World Data Research and Development, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Rikiya Yamashita
- Department of Biomedical Data Science, Stanford University School of Medicine, 1265 Welch Road, Stanford, CA, 94305, USA
| | - Toshiyuki Sato
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuko Someya
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kojiro Taura
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroyoshi Isoda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|