1
|
Ma Q, Wu F, Liu X, Zhao C, Sun Y, Li Y, Zhang W, Ju H, Wang Y. 20-hydroxyecdysone suppresses bladder cancer progression via inhibiting USP21: A mechanism associated with deubiquitination and degradation of p65. Transl Oncol 2024; 45:101958. [PMID: 38663220 PMCID: PMC11059137 DOI: 10.1016/j.tranon.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary tract and a prevalent cancer worldwide, still requiring efficient therapeutic agents and approaches. 20-Hydroxyecdysone (20-HE), a steroid hormone, can be found in insects and few plants and mediate numerous biological events to control the progression of varying diseases; however, its impacts on bladder cancer remain unclear. In the study, we found that 20-HE treatments effectively inhibited the viability and proliferation of bladder cancer cells and induced apoptosis by activating Caspase-3. The migratory and invasive potential of bladder cancer cells was markedly repressed by 20-HE in a dose-dependent manner. The inhibitory effects of 20-HE on bladder cancer were confirmed in an established xenograft mouse model, as indicated by the markedly reduced tumor growth rates and limited lung and lymph node metastasis. High-throughput RNA sequencing was performed to explore dysregulated genes in bladder cancer cells after 20-HE treatment. We identified ubiquitin-specific protease 21 (USP21) as a key deubiquitinating enzyme for bladder cancer progression and a positive correlation between USP21 and nuclear factor-κB (NF-κB)/p65 in patients. Furthermore, 20-HE treatments markedly reduced USP21 expression, NF-κB/p65 mRNA, stability and phosphorylated NF-κB/p65 expression levels in bladder cancer cells, which were validated in animal tumor tissues. Mechanistic studies showed that USP21 directly interacted with and stabilized p65 by deubiquitinating its K48-linked polyubiquitination in bladder cancer cells, which could be abolished by 20-HE treatment, contributing to p65 degradation. Finally, we found that USP21 overexpression could not only facilitate the proliferation, migration, and invasion of bladder cancer cells, but also significantly eliminated the suppressive effects of 20-HE on bladder cancer. Notably, 20-HE could still perform its anti-tumor role in bladder cancer when USP21 was knocked down with decreased NF-κB/p65 expression and activation, revealing that USP21 suppression might not be the only way for 20-HE during bladder cancer treatment. Collectively, all our results clearly demonstrated that 20-HE may function as a promising therapeutic strategy for bladder cancer treatment mainly through reducing USP21/p65 signaling expression.
Collapse
Affiliation(s)
- Qiang Ma
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China; Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China; Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Fei Wu
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Xiaohui Liu
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Cuifang Zhao
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Yang Sun
- Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Yuanyuan Li
- Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Wei Zhang
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China; Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Hongge Ju
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China; Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China.
| | - Yukun Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China; Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Xia Z, Li M, Hu M, Lin Y, Atteh LL, Fu W, Gao L, Bai M, Huang C, Yue P, Liu Y, Meng W. Phosphoproteomics reveals that cinobufotalin promotes intrahepatic cholangiocarcinoma cell apoptosis by activating the ATM/CHK2/p53 signaling pathway. Front Oncol 2022; 12:982961. [PMID: 36185307 PMCID: PMC9523695 DOI: 10.3389/fonc.2022.982961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor that originates from bile duct’s epithelial cells and is usually characterized by insidious symptoms and poor prognosis. Cinobufotalin (CB), an active ingredient obtained from the Traditional Chinese Medicine ChanSu, is purported to exhibit a wide range of antitumorigenic activities. However, the mechanism by which it achieves such pharmacological effects remains elusive. Here, we disclosed the mechanism of action by which CB inhibits ICC cells. Initial experiments revealed that the proliferation of RBE and HCCC-9810 cells was significantly inhibited by CB with IC50 values of 0.342 μM and 0.421 μM respectively. CB induced the expression of caspase-3 subsequently leading to the apoptosis of ICC cells. Phosphoproteomics revealed that the phosphorylation of many proteins associated with DNA damage response increased. Kinase-substrate enrichment analysis revealed that ATM was activated after CB treatment, while CDK1 was inactivated. Activated ATM increased p-CHK2-T68 and p-p53-S15, which promoted the expression of FAS, DR4 and DR5 and triggered cell apoptosis. In summary, this work reveals the role of CB in inducing DNA damage and cell apoptosis involved in the activation of the ATM/CHK2/p53 signaling pathway, and indicates that CB may serve as a chemotherapeutic drug candidate for ICC treatment.
Collapse
Affiliation(s)
- Zhili Xia
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Minzhen Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yanyan Lin
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Institute of Hepatopancreatobiliary Surgery, Lanzhou, China
| | | | - Wenkang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Mingzhen Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chongfei Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ping Yue
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Institute of Hepatopancreatobiliary Surgery, Lanzhou, China
| | - Yu Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Wenbo Meng, ; Yu Liu,
| | - Wenbo Meng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Institute of Hepatopancreatobiliary Surgery, Lanzhou, China
- *Correspondence: Wenbo Meng, ; Yu Liu,
| |
Collapse
|
3
|
Wang J, Chang H, Su M, Zhao H, Qiao Y, Wang Y, Shang L, Shan C, Zhang S. The Potential Mechanisms of Cinobufotalin Treating Colon Adenocarcinoma by Network Pharmacology. Front Pharmacol 2022; 13:934729. [PMID: 35814224 PMCID: PMC9262105 DOI: 10.3389/fphar.2022.934729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Network pharmacology, as a novel way using bioinformatics to explore drug targets and interactions in cancer, broadens our understanding of drug action, thereby facilitating drug discovery. Here, we utilized network pharmacology to explore the role and mechanism by which cinobufotalin functions in colon adenocarcinoma (COAD). We found that cinobufotalin represses the growth and proliferation of colon cancer cells, and integrated public databases for targets reported to be associated with COAD, together with those predicted to be targets of cinobufotalin. Targets overlapped between COAD-associated proteins and cinobufotalin target proteins were used to filter candidate targets of cinobufotalin in COAD. The following proteins were thought to occupy a key position in COAD-cinobufotalin target networks: SRC, PIK3R1, MAPK1, PIK3CA, HSP90AA1, CTNNB1, GRB2, RHO1, PTPN11, and EGFR. The networks regulated by cinobufotalin were involved mainly in extracellular signal stimulation and transduction, including MAPK signaling pathway, PI3K-AKT signaling pathway, and JAK-STAT signaling pathway. Besides, transcriptome sequencing results also indicated that cinobufotalin inhibits the response of colon cancer cells to extracellular stimulation and promotes cell apoptosis. Molecular docking results showed that cinobufotalin matches in the pocket of the top candidate cinobufotalin target proteins (SRC, PIK3R1, MAPK1 and PIK3CA). These findings demonstrate cinobufotalin can be developed as potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- *Correspondence: Shuai Zhang, ; Changliang Shan, ; Jiyan Wang,
| | - Hongkai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Meng Su
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Huifang Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaya Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- *Correspondence: Shuai Zhang, ; Changliang Shan, ; Jiyan Wang,
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Shuai Zhang, ; Changliang Shan, ; Jiyan Wang,
| |
Collapse
|
4
|
Kong L, Liu X, Yu B, Yuan Y, Zhao Q, Chen Y, Qu B, Du X, Tian X, Shao R, Wang Y. Cinobufacini Injection Inhibits the Proliferation of Triple-Negative Breast Cancer Through the Pin1-TAZ Signaling Pathway. Front Pharmacol 2022; 13:797873. [PMID: 35450041 PMCID: PMC9016199 DOI: 10.3389/fphar.2022.797873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC), which is characterized by the total absence of human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR), and estrogen receptor (ER) expression. Cinobufacini injection (CI) is the aqueous extract from the dry skin of Bufo gargarizans, which is broadly used for the treatment of malignant tumors. However, the potential mechanism of CI against TNBC has not been fully revealed. In this study, we found that CI inhibited the proliferation of MDA-MB-231 and 4T1 cells in a time- and dose-dependent manner. RNA-seq data showed that downregulated and upregulated genes were mainly enriched in biological processes related to tumor cell proliferation, including cell cycle arrest and regulation of apoptosis signaling pathways. Indeed, after CI treatment, the protein level of CDK1 and Bcl-2/Bax decreased, indicating that CI induced the cell cycle of MDA-MB-231 arrest in the G2/M phase and increased the rate of apoptosis. Meanwhile, CI significantly inhibited the growth of tumor in vivo, and RNA-seq data showed that the TAZ signaling pathway played a vital role after CI treatment. Both immunohistochemistry and Western blot analysis confirmed the downregulation of Pin1 and TAZ, caused by CI treatment. Furthermore, the bioinformatics analysis indicated that Pin1 and TAZ were indeed elevated in TNBC patients, with poor staging, classification, and patient survival rate. In conclusion, CI effectively inhibited the proliferation of TNBC in vitro and in vivo and induced their apoptosis and cycle arrest through the Pin1–TAZ pathway.
Collapse
Affiliation(s)
- Lu Kong
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bing Yu
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Ye Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianru Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuru Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbruecken, Germany
| | - Xue Du
- Tianjin Union Medical Centre, Tianjin, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Chen R, Guan Z, Zhong X, Zhang W, Zhang Y. Network Pharmacology Prediction: The Possible Mechanisms of Cinobufotalin against Osteosarcoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3197402. [PMID: 35069780 PMCID: PMC8776428 DOI: 10.1155/2022/3197402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the active compounds and targets of cinobufotalin (huachansu) compared with the osteosarcoma genes to obtain the potential therapeutic targets and pharmacological mechanisms of action of cinobufotalin on osteosarcoma through network pharmacology. METHODS The composition of cinobufotalin was searched by literature retrieval, and the target was selected from the CTD and TCMSP databases. The osteosarcoma genes, found from the GeneCards, OMIM, and other databases, were compared with the cinobufotalin targets to obtain potential therapeutic targets. The protein-protein interaction (PPI) network of potential therapeutic targets, constructed through the STRING database, was inputted into Cytoscape software to calculate the hub genes, using the NetworkAnalyzer. The hub genes were inputted into the Kaplan-Meier Plotter online database for exploring the survival curve. Functional enrichment analysis was identified using the DAVID database. RESULTS 28 main active compounds of cinobufotalin were explored, including bufalin, adenosine, oleic acid, and cinobufagin. 128 potential therapeutic targets on osteosarcoma are confirmed among 184 therapeutic targets form cinobufotalin. The hub genes included TP53, ACTB, AKT1, MYC, CASP3, JUN, TNF, VEGFA, HSP90AA1, and STAT3. Among the hub genes, TP53, ACTB, MYC, TNF, VEGFA, and STAT3 affect the patient survival prognosis of sarcoma. Through function enrichment analysis, it is found that the main mechanisms of cinobufotalin on osteosarcoma include promoting sarcoma apoptosis, regulating the cell cycle, and inhibiting proliferation and differentiation. CONCLUSION The possible mechanisms of cinobufotalin against osteosarcoma are preliminarily predicted through network pharmacology, and further experiments are needed to prove these predictions.
Collapse
Affiliation(s)
- Riyu Chen
- Guangzhou University of Chinese Medicine, 510000 Guangzhou, China
| | - Zeyi Guan
- Southern Medical University, 510000 Guangzhou, China
| | - Xianxing Zhong
- Guangzhou University of Chinese Medicine, 510000 Guangzhou, China
| | - Wenzheng Zhang
- Department of Joint Sports Medicine, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 271000 Taian, China
| | - Ya Zhang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, 271000 Taian, China
| |
Collapse
|
6
|
Li C, Guo H, Wang C, Zhan W, Tan Q, Xie C, Sharma A, Sharma HS, Chen L, Zhang Z. Network pharmacological mechanism of Cinobufotalin against glioma. PROGRESS IN BRAIN RESEARCH 2021; 265:119-137. [PMID: 34560920 DOI: 10.1016/bs.pbr.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Cinobufotalin was extracted from the skin of Chinese giant salamander or black sable with good clinical effect against tumor. This study aims to explore the mechanism of Cinobufotalin components and predict the target of action of Cinobufotalin on glioma. METHODS The active components of Cinobufotalin were screened by the Chinese medicine pharmacology database and analysis platform (TCMSP), PubChem database, etc. The potential molecular components and targets were identified and enrichment analysis was conducted through the construction of related networks and analysis of their characteristics. Relevant targets of glioma were searched through TTD, DRUGBANK, and other databases, and the intersection was found and the key targets were found too. RESULTS A total of 21 active components and 184 target genes of Cinobufotalin were found. According to the enrichment analysis results, the pharmacological mechanism of Cinobufotalin mainly includes inhibition of the cell cycle, promotion of cell apoptosis, and regulation of immunity. On this basis, RAC1, FOS, and NOS3 can be preliminarily predicted as potential targets of Cinobufotalin in the treatment of glioma. CONCLUSIONS The screening of active ingredients and target prediction based on network pharmacology can provide a new research idea for the multi-target treatment of glioma with Cinobufotalin.
Collapse
Affiliation(s)
- Cong Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Hanyu Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Chao Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Wengang Zhan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Qijia Tan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Caijun Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Zhiqiang Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China.
| |
Collapse
|
7
|
The Effectiveness and Safety of Cinobufotalin Injection as an Adjunctive Treatment for Lung Cancer: A Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8852261. [PMID: 33628320 PMCID: PMC7881937 DOI: 10.1155/2021/8852261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/10/2020] [Accepted: 01/23/2021] [Indexed: 01/26/2023]
Abstract
Cinobufotalin injection is a water-soluble preparation extracted from the skin secretion of Bufo bufo gargarizans Cantor or B. melanotictus Schneider, which has been widely used as an adjuvant treatment in lung cancer patients. This study aimed to evaluate the clinical efficacy and safety of cinobufotalin (PubChem CID: 259776) injection as an adjunctive treatment for lung cancer. We designed a meta-analysis that performed following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We aim to include randomized controlled trials by systematically searching the PubMed, EMBASE, CNKI, Wanfang database, VIP, CBM, the Cochrane Central Register of Controlled Trials, and Chinese Clinical Trial Registry from inception to Mar 1, 2020, comparing the difference between the use of cinobufotalin injection as an adjunctive treatment and a control group without cinobufotalin injection. The objective response rate (ORR) and quality of life (QOL) will be defined as the primary outcomes, and the disease control rate (DCR) and adverse events will be defined as the secondary outcomes. We included 21 articles with 1735 cases of lung cancer patients. Comparison results show that combining with cinobufotalin injection can improve ORR (OR = 1.77, 95% CI [1.43, 2.21], P < 0.001), with low heterogeneity (P = 0.94, I 2 = 0%); DCR (OR = 2.20, 95% CI [1.70, 2.85], P < 0.001), with low heterogeneity (P = 0.60, I 2 = 0%); KPS score (OR = 3.10, 95% CI [2.23, 4.32], P < 0.001), with low heterogeneity (P = 0.85, I 2 = 0%); and the effect of pain relief (OR = 2.68, 95% CI [1.30, 5.55], P = 0.008), with low heterogeneity (P = 0.72, I 2 = 0%). Low-to-moderate evidence shows that cinobufotalin injection combined with chemotherapy can significantly increase ORR, DCR, QOL, and the effect of pain relief. Meanwhile, cinobufotalin injection did not bring additional adverse events such as hematological toxicity, gastrointestinal toxicity, cardiotoxicity, hepatotoxicity, and nephrotoxicity; however, multicenter, large-sample, high-quality clinical research results are still needed to reveal the therapeutic effect of cinobufotalin injection in small-cell lung cancer (PROSPERO registration number: CRD42020170052).
Collapse
|