1
|
Tran MN, Kim NS, Lee S. Biological network comparison identifies a novel synergistic mechanism of Ginseng Radix-Astragali Radix herb pair in cancer-related fatigue. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118447. [PMID: 38885914 DOI: 10.1016/j.jep.2024.118447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng Radix and Astragali Radix are commonly combined to tonify Qi and alleviate fatigue. Previous studies have employed biological networks to investigate the mechanisms of herb pairs in treating different diseases. However, these studies have only elucidated a single network for each herb pair, without emphasizing the superiority of the herb combination over individual herbs. AIM OF THE STUDY This study proposes an approach of comparing biological networks to highlight the synergistic effect of the pair in treating cancer-related fatigue (CRF). METHODS The compounds and targets of Ginseng Radix, Astragali Radix, and CRF diseases were collected and predicted using different databases. Subsequently, the overlapping targets between herbs and disease were imported into the STRING and DAVID tools to build protein-protein interaction (PPI) networks and analyze enriched KEGG pathways. The biological networks of Ginseng Radix and Astragali Radix were compared separately or together using the DyNet application. Molecular docking was used to verify the predicted results. Further, in vitro experiments were conducted to validate the synergistic pathways identified in in silico studies. RESULTS In the PPI network comparison, the combination created 89 new interactions and an increased average degree (11.260) when compared to single herbs (10.296 and 9.394). The new interactions concentrated on HRAS, STAT3, JUN, and IL6. The topological analysis identified 20 core targets of the combination, including three Ginseng Radix-specific targets, three Astragali Radix-specific targets, and 14 shared targets. In KEGG enrichment analysis, the combination regulated additional signaling pathways (152) more than Ginseng Radix (146) and Astragali Radix (134) alone. The targets of the herb pair synergistically regulated cancer pathways, specifically hypoxia-inducible factor 1 (HIF-1) signaling pathway. In vitro experiments including enzyme-linked immunosorbent assay and Western blot demonstrated that two herbs combination could up-regulate HIF-1α signaling pathway at different combined concentrations compared to either single herb alone. CONCLUSION The herb pair increased protein interactions and adjusted metabolic pathways more than single herbs. This study provides insights into the combination of Ginseng Radix and Astragali Radix in clinical practice.
Collapse
Affiliation(s)
- Minh Nhat Tran
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea; Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea; Faculty of Traditional Medicine, Hue University of Medicine and Pharmacy, Hue University, Thua Thien Hue, Viet Nam.
| | - No Soo Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea.
| | - Sanghun Lee
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea; Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
3
|
Han M, Lin J, Yang Y, Ding Y, Ge W, Fan H, Wang C, Xie W. Xinshuaining preparation protects H9c2 cells from H 2O 2-induced oxidative damage through the PI3K/Akt/Nrf-2 signaling pathway. Clin Exp Hypertens 2023; 45:2131806. [PMID: 36266998 DOI: 10.1080/10641963.2022.2131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death. Oxidative stress is an important pathological process of a variety of CVDs. Xinshuaining preparation has a therapeutic effect on the heart failure. However, the anti-oxidative stress role of Xinshuaining preparation in H9c2 cells is still unclear. METHODS The medicated serum of Xinshuaining preparation was acquired and utilized to hatch with H2O2-induced H9c2 cells. Main components in the Xinshuaining preparation were analyzed by liquid chromatography-mass spectrometry (LC/MS). The effect of medicated serum on the cell viability, apoptosis rate, the oxidative stress indicators (SOD, GSH-Px, and MDA), mitochondrial membrane potential (MMP), and ROS level was evaluated by CCK-8, flow cytometry, commercial biochemical detection kits, and JC-1 staining. Additionally, the associated mechanism was determined by the detection of the protein levels (PI3K, phosphorylated PI3K, Akt, phosphorylated Akt, and Nrf-2) through western blot assays, which was also further assessed with the application of LY294002. RESULTS The medicated serum of Xinshuaining preparation notably increased the H2O2-reduced, the cell viability, the concentration of SOD and GSH-Px, MMP level and the relative protein expression level of phosphorylated PI3K and Akt and Nrf-2, while dampened the H2O2-elevated the level of the cell apoptosis rate, MDA, and ROS. However, Xinshuaining preparation on the cell viability, apoptosis, and oxidative stress was notably antagonized by LY294002 pre-treatment. CONCLUSIONS The medicated serum of Xinshuaining preparation increased the cell viability and suppressed apoptosis and oxidative stress via the PI3K/Akt/Nrf-2 signaling pathway.
Collapse
Affiliation(s)
- Mingjun Han
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Jie Lin
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Yi Yang
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Yumei Ding
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Wenjun Ge
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Haoran Fan
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Ce Wang
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Wen Xie
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| |
Collapse
|
4
|
Ye Y, Duan B, Zhou Z, Han L, Huang F, Li J, Wang Q, Zeng X, Yu X. Integrated metabolomics and network pharmacology to reveal the mechanisms of Guizhi-Fuling treatment for myocardial ischemia. Chem Biodivers 2022; 19:e202200386. [PMID: 36073658 DOI: 10.1002/cbdv.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
Myocardial ischemia is a cardio-physiological condition caused by a decrease in blood perfusion to the heart, resulting in reduced oxygen supply and abnormal myocardial energy metabolism. Guizhi-Fuling (GZFL) is effective in treating Myocardial ischemia. However, its mechanism of action remains unclear and requires further exploration. we hope to reveal the mechanisms of GZFL treating Myocardial ischemia by integrating metabolomics and network pharmacology. In this study, myocardial metabolomic analysis was first performed using GC-MS to discover the potential mechanism of action of GZFL on myocardial ischemia. Then, network pharmacology was used to analyze key pathways and construct a pathway-core target network. Molecular docking was used to validate core targets in network pharmacological signaling pathways. Finally, western blots were used to verify core targets of metabolomics and network pharmacology integrated pathways as well as key targets in signaling pathways. As a result, we identified 22 important biomarkers of GZFL for the treatment of myocardial ischemia. Most of these metabolites were restored by modulation after GZFL treatment. Based on the network pharmacology, 297 targets of GZFL in the treatment of myocardial ischemia were obtained. The further comprehensive analysis focused on 3 key targets, including Tyrosine hydroxylase (TH), myeloperoxidase (MPO), and phosphatidylinositol 3-kinases (PIK3CA), and their associated metabolites and pathways. Compared with the model group, the protein expression levels of TH, MPO and PIK3CA were decreased in GZFL. Therefore, the mechanism of GZFL for treating myocardial ischemia may be to inhibit myocardial inflammatory factors, reduce myocardial inflammation, and restore endothelial function, while regulating norepinephrine release and uric acid concentration.
Collapse
Affiliation(s)
- Yan Ye
- Hubei University of Chinese Medicine, college of pharmacy, , 430065, Wuhan, CHINA
| | - Bailu Duan
- Hubei University of Chinese Medicine, College of Basic Medicine, Qingling Street, Wuhan, 430065, wuhan, CHINA
| | - Zhenxiang Zhou
- Hubei University of Chinese Medicine, College of Basic Medicine, Qingling Street, Wuhan, 430065, Wuhan, CHINA
| | - Lintao Han
- Hubei University of Chinese Medicine, College of Pharmacy, Qingling Street, Wuhan, wuhan, CHINA
| | - Fang Huang
- Hubei University of Chinese Medicine, College of Basic Medicine, Qingling Street, Wuhan, wuhan, CHINA
| | - Jingjing Li
- Hubei University of Chinese Medicine, College of Basic Medicine, Qingling Street, Wuhan, wuhan, CHINA
| | - Qiong Wang
- Hubei University of Chinese Medicine, College of Basic Medicine, Qingling Street, Wuhan, wuhan, CHINA
| | - Xiangfa Zeng
- Hubei University of Chinese Medicine, Qingling Street, Wuhan, wuhan, CHINA
| | - Xiaoming Yu
- Hubei University of Chinese Medicine, College of Basic Medicine, Qingling Street, Wuhan, wuhan, CHINA
| |
Collapse
|
5
|
Yang HY, Liu ML, Luo P, Yao XS, Zhou H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154268. [PMID: 35777118 DOI: 10.1016/j.phymed.2022.154268] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The field of network pharmacology showed significant development. The concept of network pharmacology has many similarities to the philosophy of traditional Chinese medicine (TCM), making it suitable to understand the action mechanisms of TCM in treating complex diseases, such as ischemic heart diseases (IHDs). PURPOSE This review summarizes the representative applications of network pharmacology in deciphering the mechanism underlying the treatment of IHDs with TCM. METHODS In this report, we used "ischemic heart disease" OR "coronary heart disease" OR "coronary artery disease" OR "myocardial ischemia" AND ("network pharmacology" OR "systematic pharmacology") as keywords to search for publications from PubMed, the Web of Science, and Google Scholar databases and then analyzed the representative research reports that summarized and validated the active components and targets network of TCM in improving IHDs to show the advantages and deficiencies of network pharmacology applied in TCM research. RESULTS The network pharmacology research indicated that HGF, PGF, MMP3, INSR, PI3K, MAPK1, SRC, VEGF, VEGFR-1, NO, eNOS, NO3, IL-6, TNF-α, and more are the main targets of TCM. Apigenin, 25S-macrostemonoside P, ginsenosides Re, Rb3, Rg3, SheXiang XinTongNing, colchicine, dried ginger-aconite decoction, Suxiao Xintong dropping pills, Ginseng-Danshen drug pair and Shenlian and more are the active ingredients, extracts, and formulations of TCM to ameliorate IHDs. These active compounds, extract, and formulations of TCM treat IHDs by delaying ventricular remodeling, reducing myocardial fibrosis, decreasing reactive oxygen species, regulating myocardial energy metabolism, ameliorating inflammation, mitigating apoptosis, and many other aspects. CONCLUSIONS The network pharmacology supplies a novel research exemplification for understanding the treatment of IHDs with TCM. However, the application of network pharmacology in TCM studies is still at a superficial level. By rational combining artificial intelligence technology and network pharmacology, molecular biology, metabolomics, and other advanced theories and technologies, and systematically studying the metabolic process and the network among products, targets, and pathways of TCM from the clinical perspective may be a potential development trend in network pharmacology.
Collapse
Affiliation(s)
- Hua-Yi Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P R China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, P R China
| | - Men-Lan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P R China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, P R China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, P R China
| | - Pei Luo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P R China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, P R China.
| | - Xin-Sheng Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P R China; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P R China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, P R China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P R China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong Province, P R China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P R China.
| |
Collapse
|
6
|
Liu Y, Zhong H, Xu P, Zhou A, Ding L, Qiu J, Wu H, Dai M. Deciphering the combination mechanisms of Gualou–Xiebai herb pair against atherosclerosis by network pharmacology and HPLC-Q-TOF-MS technology. Front Pharmacol 2022; 13:941400. [PMID: 36120369 PMCID: PMC9476847 DOI: 10.3389/fphar.2022.941400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Gualou (Trichosanthes kirilowii Maxim)–Xiebai (Allium macrostemon Bunge) (GLXB) is a well-known herb pair against atherosclerosis (AS). However, the combination mechanisms of GLXB herb pair against AS remain unclear. Objective: To compare the difference in efficacy between GLXB herb pair and the single herbs and to explore the combination mechanisms of GLXB against AS in terms of compounds, targets, and signaling pathways. Methods: The combined effects of GLXB were evaluated in AS mice. The main compounds of GLXB were identified via quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS) and UNIFI informatics platforms. The united mechanisms of GLXB in terms of nodes, key interactions, and functional clusters were realized by network pharmacology. At last, the anti-atherosclerotic mechanisms of GLXB were validated using enzyme-linked immunosorbent assay (ELISA) and Western blot in AS mice. Results: The anti-atherosclerotic effects of the GLXB herb pair (6 g/kg) were more significant than those of Gualou (4 g/kg) and Xiebai (2 g/kg) alone. From the GLXB herb pair, 48 main components were identified. In addition, the GLXB herb pair handled more anti-atherosclerotic targets and more signaling pathways than Gualou or Xiebai alone, whereas 10 key targets of GLXB were found using topological analysis. Furthermore, the GLXB herb pair (6 g/kg) could suppress the inflammatory target levels of IL-6, IL-1β, TNF-α, ALOX5, PTGS2, and p-p38 in AS mice. GLXB herb pair (6 g/kg) could also ameliorate endothelial growth and function by regulating the levels of VEGFA, eNOS, p-AKT, VCAM-1, and ICAM-1 and reducing macrophage adhesion to vascular wall in AS mice. GLXB herb pair (6 g/kg) could improve the blood lipid levels in AS mice. In addition, the regulating effects of GLXB herb pair (6 g/kg) on levels of IL-1β, TNF-α, ALOX5, VEGFA, eNOS, VCAM-1, ICAM-1, and blood lipids were more significant than those of Gualou (4 g/kg) or Xiebai alone (2 g/kg). Conclusion: The combination mechanisms of the GLXB herb pair were elucidated in terms of components, targets, and signaling pathways, which may be related to suppressing inflammation, regulating vascular endothelial growth/function, and improving blood lipid levels.
Collapse
Affiliation(s)
- Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hua Zhong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Pengbo Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: An Zhou, ; Hongfei Wu, ,
| | - Lidan Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jingwen Qiu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- *Correspondence: An Zhou, ; Hongfei Wu, ,
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Ding J, Wu J, Wei H, Li S, Huang M, Wang Y, Fang Q. Exploring the Mechanism of Hawthorn Leaves Against Coronary Heart Disease Using Network Pharmacology and Molecular Docking. Front Cardiovasc Med 2022; 9:804801. [PMID: 35783840 PMCID: PMC9243333 DOI: 10.3389/fcvm.2022.804801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/24/2022] [Indexed: 01/09/2023] Open
Abstract
Hawthorn leaves, which is a traditional Chinese medicine (TCM), has been used for treating coronary heart disease (CHD) for a long time in China. But the limited understanding of the main active components and molecular mechanisms of this traditional medicine has restricted its application and further research. The active compounds of hawthorn leaves were obtained from TCMSP database and SymMap database. The targets of it were predicted based on TCMSP, PubChem, Swiss Target Prediction, and SymMap database. The putative targets of CHD were gathered from multi-sources databases including the Online Mendelian Inheritance in Man (OMIM) database, the DrugBank database, the GeneCards database and the DisGeNet database. Network topology analysis, GO and KEGG pathway enrichment analyses were performed to select the key targets and pathways. Molecular docking was performed to demonstrate the binding capacity of the key compounds to the predicted targets. Furthermore, RAW264.7 cells stimulated by lipopolysaccharides (LPS) were treated with three effective compounds of hawthorn leaves to assess reliability of prediction. Quercetin, isorhamnetin and kaempferol were main active compounds in hawthorn leaves. Forty four candidate therapeutic targets were identified to be involved in protection of hawthorn leaves against CHD. Additionally, the effective compounds of it had good binding affinities to PTGS2, EGFR, and MMP2. Enrichment analyses suggested that immune inflammation related biological processes and pathways were possibly the potential mechanism. Besides, we found that three predicted effective compounds of hawthorn leaves decreased protein expression of PTGS2, MMP2, MMP9, IL6, IL1B, TNFα and inhibited activation of macrophage. In summary, the present study demonstrates that quercetin, kaempferol and isorhamnetin are proved to be the main effective compounds of hawthorn leaves in treatment of CHD, possibly by suppressing expression of PTGS2, MMP2, MMP9, inflammatory cytokines and macrophages viability. This study provides a new understanding of the active components and mechanisms of hawthorn leaves treating CHD from the perspective of network pharmacology.
Collapse
Affiliation(s)
- Jie Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wu
- Department of Gastroenterology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Man Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
The Multiple Pharmacologic Functions and Mechanisms of Action of Guizhi Fuling Formulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6813421. [PMID: 35529925 PMCID: PMC9076289 DOI: 10.1155/2022/6813421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
Abstract
Objectives Guizhi Fuling Formulation (GZFL), a traditional Chinese medical formulation, consists of Cinnamomi Ramulus, Paeoniae Radix Alba (or Paeoniae Radix Rubra), Moutan Cortex, Persicae Semen, and Poria, with multiple therapeutic functions such as sedation, antitumor activity, anti-inflammation, and neuroprotection. However, its clinical applications remain relatively fragmented, and the underlying mechanisms of GZFL in different diseases are still not very certain. Further research and summary in both application and mechanisms remain to be needed for human health and the best use of GZFL. Therefore, we summarized the multiple pharmacologic effects and possible mechanisms of action of GZFL according to recent 17 years of research. Methods We retrieved four English and two Chinese databases using these keywords (the formulation name or its synonyms) and searched articles written in English from January 2006 up to February 2022. Key Findings. GZFL exhibits multiple pharmacologic advantages in gynecologic diseases and other expanding diseases such as cancer, blood, and vascular disease, renal failure, inflammation, and brain injury. Possibly due to its diverse bioactive components and pharmacologic activities, GZFL could target the multiple signaling pathways involved in regulating blood circulation, inflammatory and immune factors, proliferation, apoptosis, and so on. Conclusion This review suggests that GZFL displays promising therapeutic effects for many kinds of diseases, which have been beyond the scope of the original prescription for gynecologic diseases. In this way, we wish to provide a reference and recommendation for further preclinic and clinic studies.
Collapse
|
9
|
Du H, Fu H, Yu J, Cheng Z, Zhang Y. Efficacy of Buqi Huoxue Decoction Combined with Cardiac Rehabilitation Nursing after Coronary Intervention in Patients with Acute ST-Segment Elevation Myocardial Infarction and Its Influence on Prognosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4008966. [PMID: 35345661 PMCID: PMC8957433 DOI: 10.1155/2022/4008966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Objective To investigate the efficacy of the application of Buqi Huoxue Decoction combined with cardiac rehabilitation nursing for patients with acute ST-segment elevation myocardial infarction (STEMI) after percutaneous coronary intervention (PCI) and its influence on the prognosis. Methods 120 STEMI patients undergoing PCI were randomly divided into control group, cardiac care group, traditional Chinese medicine and western medicine group (TCM + WM group), and comprehensive treatment group. The control group was treated with a conventional antiplatelet therapy. On the basis of the control group, the cardiac care group was combined with cardiac care treatment. The TCM + WM group was combined with Buqi Huoxue Decoction, and the comprehensive treatment group was combined with cardiac rehabilitation care and Buqi Huoxue Decoction. The total clinical effective rate, readmission rate, and adverse reaction rate of the four groups were measured. Moreover, the myocardial injury markers (creatine kinase isoenzyme (CK-MB), cardiac troponin I (cTnI), and α-Hydroxybutyrate dehydrogenase (α-HBDH)), vascular endothelial function indexes (endothelin (ET-1) and vascular endothelial growth factor (VEGF)), cardiac function indexes (left ventricular ejection fraction (LVEF), left ventricle shortening rate (LFS), left ventricular end diastolic diameter (LVEDd), and left ventricular end systolic diameter (LVESd)), and QOL quality of life score (appetite, spirit, sleep, fatigue, and daily life) were measured. Results The total effective rate of comprehensive treatment group was obviously increased versus to the control group and cardiac care group. The CK-MB, cTnI, α-HBDH, ET-1, LVEDd, and LVESd levels and SAS and SDS scores in the four groups were decreased, and VEGF, LVEF, and FS levels and QOL quality of life scores were increased after treatment. Moreover, the comprehensive treatment group has more significant changes than the other three groups. The readmission rate in comprehensive treatment group was significantly lower than the other three groups, and the difference in the incidence of adverse reactions in the four groups was not statistically significant. Conclusion Buqi Huoxue Decoction combined with cardiac rehabilitation after PCI has a significant clinical effect on STEMI patients with PCI postoperative treatment, which can effectively reduce myocardial injury, improve the patient's cardiac function and vascular endothelial function, and improve the patient's quality of life, which can better improve the prognosis of patients.
Collapse
Affiliation(s)
- Haiping Du
- Department of Cardiology (I), East Hospital, Yantaishan Hospital, Yantai 264000, China
| | - Hui Fu
- Emergency Center, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Jing Yu
- Cardiac Function Examination Room, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao 266042, China
| | - Zuowang Cheng
- Department of Laboratory Medicine, Zhangqiu District People's Hospital, Jinan 250200, China
| | - Yanhong Zhang
- Department of Hypertension, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan 250012, China
| |
Collapse
|
10
|
Molecular Mechanism of Xixin-Ganjiang Herb Pair Treating Chronic Obstructive Pulmonary Disease-Integrated Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5532009. [PMID: 34211564 PMCID: PMC8211495 DOI: 10.1155/2021/5532009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by high morbidity, disability, and mortality, which seriously threatens human life and health. Xixin and Ganjiang are classic herb pairs of Zhongjing Zhang, which are often used to treat COPD in China. However, the substance basis and mechanism of action of Xixin-Ganjiang herb pair (XGHP) in the treatment of COPD remain unclear. Methods On the website of TCMSP and the DrugBank, effective compounds and targets of XGHP were found. COPD targets were obtained from GeneCards, DisGeNET, and GEO gene chips. Intersecting these databases resulted in a library of drug targets for COPD. Then, intersection targets were used for protein-protein interaction (PPI) and pathway enrichment analysis. Finally, the binding activity between compounds and core genes was evaluated by molecular docking to verify the expression level of PTGS2 and PPARG in rats. Results Twelve effective compounds and 104 core genes were found in the intersection library, and kaempferol, sesamin, β-sitosterol, PTGS2, and PPARG were particularly prominent in the network analysis. A total of 113 pathways were obtained and enrichment of the TNF signaling pathway, IL-17 signaling pathway, and C-type lectin receptor signaling pathway was particularly obvious. Molecular docking indicated that kaempferol, sesamin, and β-sitosterol were closely related to PTGS2 and PPARG and were superior to aminophylline. Key compounds in XGHP could restrict the expression of PTGS2 in the lung tissues of COPD rats and promote the expression of PPARG. Conclusion Inhibition of the expression of inflammatory factor PTGS2 and promotion of the expression of PPARG may be an effective target of XGHP in the treatment of COPD.
Collapse
|
11
|
Que W, Chen M, Yang L, Zhang B, Zhao Z, Liu M, Cheng Y, Qiu H. A network pharmacology-based investigation on the bioactive ingredients and molecular mechanisms of Gelsemium elegans Benth against colorectal cancer. BMC Complement Med Ther 2021; 21:99. [PMID: 33743701 PMCID: PMC7981997 DOI: 10.1186/s12906-021-03273-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. Gelsemium elegans Benth (GEB) is a traditional Chinese medicine commonly used for treatment for gastrointestinal cancer, including CRC. However, the underlying active ingredients and mechanism remain unknown. This study aims to explore the active components and the functional mechanisms of GEB in treating CRC by network pharmacology-based approaches. METHODS Candidate compounds of GEB were collected from the Traditional Chinese Medicine@Taiwan, Traditional Chinese Medicines Integrated Database, Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine, and published literature. Potentially active targets of compounds in GEB were retrieved from SwissTargetPrediction databases. Keywords "colorectal cancer", "rectal cancer" and "colon cancer" were used as keywords to search for related targets of CRC from the GeneCards database, then the overlapped targets of compounds and CRC were further intersected with CRC related genes from the TCGA database. The Cytoscape was applied to construct a graph of visualized compound-target and pathway networks. Protein-protein interaction networks were constructed by using STRING database. The DAVID tool was applied to carry out Gene Ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis of final targets. Molecular docking was employed to validate the interaction between compounds and targets. AutoDockTools was used to construct docking grid box for each target. Docking and molecular dynamics simulation were performed by Autodock Vina and Gromacs software, respectively. RESULTS Fifty-three bioactive compounds were successfully identified, corresponding to 136 targets that were screened out for the treatment of CRC. Functional enrichment analysis suggested that GEB exerted its pharmacological effects against CRC via modulating multiple pathways, such as pathways in cancer, cell cycle, and colorectal cancer. Molecular docking analysis showed that the representative compounds had good affinity with the key targets. Molecular dynamics simulation indicated that the best hit molecules formed a stable protein-ligand complex. CONCLUSION This network pharmacology study revealed the multiple ingredients, targets, and pathways synergistically involved in the anti-CRC effect of GEB, which will enhance our understanding of the potential molecular mechanism of GEB in treatment for CRC and lay a foundation for further experimental research.
Collapse
Affiliation(s)
- Wancai Que
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China
| | - Maohua Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China
| | - Ling Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Bingqing Zhang
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China.
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China. .,College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People's Republic of China.
| |
Collapse
|
12
|
The Shuganhuazheng Formula in Triple-Negative Breast Cancer: A Study Based on Network Pharmacology and In Vivo Experiments. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8173147. [PMID: 33414839 PMCID: PMC7752265 DOI: 10.1155/2020/8173147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common cancer in women. Among breast cancer subtypes, triple-negative breast cancer (TNBC) has the highest degree of malignancy and the worst prognosis. The Shuganhuazheng formula (SGHZF) is a traditional Chinese herbal formula for the treatment of TNBC, but the mechanism of SGHZF in the treatment of TNBC remains unclear. In this study, the therapeutic effect and mechanism of SGHZF against TNBC were preliminarily determined based on in vivo experimental verification and network pharmacology. In terms of therapeutic effects, the antitumour effect was verified by measuring and calculating tumour volume, and the expression of proto-oncogene c-Myc was verified by PCR. In terms of the mechanism, potential therapeutic targets were identified by overlapping the SGHZF-related and TNBC-related targets. After comprehensively analysing the results of the protein-protein interaction (PPI), gene ontology (GO) function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, Akt and HIF-1α were selected for verification by using immunohistochemical and Western blot analyses. The results of the study indicated that SGHZF can inhibit breast tumour growth in mice and that the mechanism may be related to the inhibition of Akt and HIF-1α expression.
Collapse
|