1
|
Wang L, Chen X, Zhang L, Li L, Huang Y, Sun Y, Yuan X. Artificial intelligence in clinical decision support systems for oncology. Int J Med Sci 2023; 20:79-86. [PMID: 36619220 PMCID: PMC9812798 DOI: 10.7150/ijms.77205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Artificial intelligence (AI) has been widely used in various medical fields, such as image diagnosis, pathological classification, selection of treatment schemes, and prognosis analysis. Especially in the image-aided diagnosis of tumors, the cooperation of human-computer interactions has become mature. However, the ethics of the application of AI as an emerging technology in clinical decision-making have not been fully supported, so the clinical decision support system (CDSS) based on AI technology has not fully realized human-computer interactions in clinical practice as the image-aided diagnosis system. The CDSS was currently used and promoted worldwide including Watson for Oncology, Chinese society of clinical oncology-artificial intelligence (CSCO AI) and so on. This paper summarized the applications and clarified the principle of AI in CDSS, analyzed the difficulties of AI in oncology decisions, and provided a reference scheme for the application of AI in oncology decisions in the future.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lu Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - YongBiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yinan Sun
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Machine Learning Techniques for Differential Diagnosis of Vertigo and Dizziness: A Review. SENSORS 2021; 21:s21227565. [PMID: 34833641 PMCID: PMC8621477 DOI: 10.3390/s21227565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023]
Abstract
Vertigo is a sensation of movement that results from disorders of the inner ear balance organs and their central connections, with aetiologies that are often benign and sometimes serious. An individual who develops vertigo can be effectively treated only after a correct diagnosis of the underlying vestibular disorder is reached. Recent advances in artificial intelligence promise novel strategies for the diagnosis and treatment of patients with this common symptom. Human analysts may experience difficulties manually extracting patterns from large clinical datasets. Machine learning techniques can be used to visualize, understand, and classify clinical data to create a computerized, faster, and more accurate evaluation of vertiginous disorders. Practitioners can also use them as a teaching tool to gain knowledge and valuable insights from medical data. This paper provides a review of the literatures from 1999 to 2021 using various feature extraction and machine learning techniques to diagnose vertigo disorders. This paper aims to provide a better understanding of the work done thus far and to provide future directions for research into the use of machine learning in vertigo diagnosis.
Collapse
|
3
|
Dynamic Uncertain Causality Graph Applied to the Intelligent Evaluation of a Shale-Gas Sweet Spot. ENERGIES 2021. [DOI: 10.3390/en14175228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shale-gas sweet-spot evaluation as a critical part of shale-gas exploration and development has always been the focus of experts and scholars in the unconventional oil and gas field. After comprehensively considering geological, engineering, and economic factors affecting the evaluation of shale-gas sweet spots, a dynamic uncertainty causality graph (DUCG) is applied for the first time to shale-gas sweet-spot evaluation. A graphical modeling scheme is presented to reduce the difficulty in model construction. The evaluation model is based on expert knowledge and does not depend on data. Through rigorous and efficient reasoning, it guarantees exact and efficient diagnostic reasoning in the case of incomplete information. Multiple conditional events and weighted graphs are proposed for specific problems in shale-gas sweet-spot evaluation, which is an extension of the DUCG that defines only one conditional event for different weighted function events and relies only on the experience of a single expert. These solutions make the reasoning process and results more objective, credible, and interpretable. The model is verified with both complete data and incomplete data. The results show that compared with other methods, this methodology achieves encouraging diagnostic accuracy and effectiveness. This study provides a promising auxiliary tool for shale-gas sweet spot evaluation.
Collapse
|