1
|
Collin LJ, Jones J, Nash R, Switchenko JM, Ward KC, McCullough LE. Racial disparities in initiation of chemotherapy among breast cancer patients with discretionary treatment indication in the state of Georgia. Breast Cancer Res Treat 2024; 205:609-618. [PMID: 38517602 PMCID: PMC11101533 DOI: 10.1007/s10549-024-07279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 03/24/2024]
Abstract
PURPOSE The majority of breast cancer patients are diagnosed with early-stage estrogen receptor (ER) positive disease. Despite effective treatments for these cancers, Black women have higher mortality than White women. We investigated demographic and clinical factors associated with receipt of chemotherapy among those with a discretionary indication who are at risk for overtreatment. METHODS Using Georgia Cancer Registry data, we identified females diagnosed with ER positive breast cancer who had a discretionary indication for chemotherapy (2010-2017). We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) associating patient demographic and clinical characteristics with chemotherapy initiation overall, and comparing non-Hispanic Black (NHB) with non-Hispanic White (NHW) women within strata of patient factors. RESULTS We identified 11,993 ER positive breast cancer patients with a discretionary indication for chemotherapy. NHB patients were more likely to initiate chemotherapy compared with NHW women (OR = 1.41, 95% CI: 1.28, 1.56). Race differences in chemotherapy initiation were pronounced among those who did not receive Oncotype DX testing (OR = 1.47, 95% CI: 1.31, 1.65) and among those residing in high socioeconomic status neighborhoods (OR = 2.48, 95% CI: 1.70, 3.61). However, we observed equitable chemotherapy receipt among patients who received Oncotype DX testing (OR = 0.90, 95% CI: 0.71, 1.14), were diagnosed with grade 1 disease (OR = 1.00, 95% CI: 0.74, 1.37), and those resided in rural areas (OR = 1.01, 95% CI: 0.76, 1.36). CONCLUSION We observed racial disparities in the initiation of chemotherapy overall and by sociodemographic and clinical factors, and more equitable outcomes when clinical guidelines were followed.
Collapse
Affiliation(s)
- Lindsay J Collin
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr, Salt Lake City, UT, 84112, USA.
| | - Jade Jones
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, USA
| | - Rebecca Nash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kevin C Ward
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Iacono D, Hatch K, Murphy EK, Cole RN, Post J, Leonessa F, Perl DP. Proteomic Changes in the Hippocampus after Repeated Explosive-Driven Blasts. J Proteome Res 2024; 23:397-408. [PMID: 38096401 PMCID: PMC10775857 DOI: 10.1021/acs.jproteome.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/06/2024]
Abstract
Repeated blast-traumatic brain injury (blast-TBI) has been hypothesized to cause persistent and unusual neurological and psychiatric symptoms in service members returning from war zones. Blast-wave primary effects have been supposed to induce damage and molecular alterations in the brain. However, the mechanisms through which the primary effect of an explosive-driven blast wave generate brain lesions and induce brain consequences are incompletely known. Prior findings from rat brains exposed to two consecutive explosive-driven blasts showed molecular changes (hyperphosphorylated-Tau, AQP4, S100β, PDGF, and DNA-polymerase-β) that varied in magnitude and direction across different brain regions. We aimed to compare, in an unbiased manner, the proteomic profile in the hippocampus of double blast vs sham rats using mass spectrometry (MS). Data showed differences in up- and down-regulation for protein abundances in the hippocampus of double blast vs sham rats. Tandem mass tag (TMT)-MS results showed 136 up-regulated and 94 down-regulated proteins between the two groups (10.25345/C52B8VP0X). These TMT-MS findings revealed changes never described before in blast studies, such as increases in MAGI3, a scaffolding protein at cell-cell junctions, which were confirmed by Western blotting analyses. Due to the absence of behavioral and obvious histopathological changes as described in our previous publications, these proteomic data further support the existence of an asymptomatic blast-induced molecular altered status (ABIMAS) associated with specific protein changes in the hippocampus of rats repeatedly expsosed to blast waves generated by explosive-driven detonations.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU
Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- Department
of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- Department
of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- Neuroscience
Program, Department of Anatomy, Physiology & Genetics, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- The
Henry M. Jackson Foundation for the Advancement of Military Medicine
(HJF), Inc., Bethesda, Maryland 20817, United States
- Neurodegeneration
Disorders Clinic, National Institute of
Neurological Disorders and Stroke, NINDS, NIH, Bethesda, Maryland 20814, United States
| | - Kathleen Hatch
- Department
of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
| | - Erin K. Murphy
- Department
of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
| | - Robert N. Cole
- Mass
Spectrometry and Proteomics, Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeremy Post
- Mass
Spectrometry and Proteomics, Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Fabio Leonessa
- Department
of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
| | - Daniel P. Perl
- DoD/USU
Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- Department
of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
| |
Collapse
|
3
|
Wang S, Fu J, Fang X. A novel DNA methylation-related gene signature for the prediction of overall survival and immune characteristics of ovarian cancer patients. J Ovarian Res 2023; 16:62. [PMID: 36978087 PMCID: PMC10053775 DOI: 10.1186/s13048-023-01142-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most life-threatening cancers affecting women worldwide. Recent studies have shown that the DNA methylation state can be used in the diagnosis, treatment and prognosis prediction of diseases. Meanwhile, it has been reported that the DNA methylation state can affect the function of immune cells. However, whether DNA methylation-related genes can be used for prognosis and immune response prediction in OC remains unclear. METHODS In this study, DNA methylation-related genes in OC were identified by an integrated analysis of DNA methylation and transcriptome data. Prognostic values of the DNA methylation-related genes were investigated through least absolute shrinkage and selection operator (LASSO) and Cox progression analyses. Immune characteristics were investigated by CIBERSORT, correlation analysis and weighted gene co-expression network analysis (WGCNA). RESULTS Twelve prognostic genes (CA2, CD3G, HABP2, KCTD14, PI3, SERPINB5, SLAMF7, SLC9A2, STC2, TBP, TREML2 and TRIM27) were identified and a risk score signature and a nomogram based on prognostic genes and clinicopathological features were constructed for the survival prediction of OC patients in the training and two validation cohorts. Subsequently, the differences in the immune landscape between the high- and low-risk score groups were systematically investigated. CONCLUSIONS Taken together, our study explored a novel efficient risk score signature and a nomogram for the survival prediction of OC patients. In addition, the differences of the immune characteristics between the two risk groups were clarified preliminarily, which will guide the further exploration of synergistic targets to improve the efficacy of immunotherapy in OC patients.
Collapse
Affiliation(s)
- Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jie Fu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Yang H, Zhang W, Ding J, Hu J, Sun Y, Peng W, Chu Y, Xie L, Mei Z, Shao Z, Xiao Y. A novel genomic instability-derived lncRNA signature to predict prognosis and immune characteristics of pancreatic ductal adenocarcinoma. Front Immunol 2022; 13:970588. [PMID: 36148233 PMCID: PMC9486402 DOI: 10.3389/fimmu.2022.970588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant tumor of the digestive system. Its grim prognosis is mainly attributed to the lack of means for early diagnosis and poor response to treatments. Genomic instability is shown to be an important cancer feature and prognostic factor, and its pattern and extent may be associated with poor treatment outcomes in PDAC. Recently, it has been reported that long non-coding RNAs (lncRNAs) play a key role in maintaining genomic instability. However, the identification and clinical significance of genomic instability-related lncRNAs in PDAC have not been fully elucidated. Methods Genomic instability-derived lncRNA signature (GILncSig) was constructed based on the results of multiple regression analysis combined with genomic instability-associated lncRNAs and its predictive power was verified by the Kaplan-Meier method. And real-time quantitative polymerase chain reaction (qRT-PCR) was used for simple validation in human cancers and their adjacent non-cancerous tissues. In addition, the correlation between GILncSig and tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) was investigated by Pearson correlation analysis. Results The computational framework identified 206 lncRNAs associated with genomic instability in PDAC and was subsequently used to construct a genome instability-derived five lncRNA-based gene signature. Afterwards, we successfully validated its prognostic capacity in The Cancer Genome Atlas (TCGA) cohort. In addition, via careful examination of the transcriptome expression profile of PDAC patients, we discovered that GILncSig is associated with EMT and an adaptive immunity deficient immune profile within TME. Conclusions Our study established a genomic instability-associated lncRNAs-derived model (GILncSig) for prognosis prediction in patients with PDAC, and revealed the potential functional regulatory role of GILncSig.
Collapse
Affiliation(s)
- Huijie Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiwen Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Ding
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Zhuo Shao
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Yang Xiao, ; Zhuo Shao,
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Xiao, ; Zhuo Shao,
| |
Collapse
|
5
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
6
|
Li M, Tian X, Guo H, Xu X, Liu Y, Hao X, Fei H. A novel lncRNA-mRNA-miRNA signature predicts recurrence and disease-free survival in cervical cancer. Braz J Med Biol Res 2021; 54:e11592. [PMID: 34550275 PMCID: PMC8457683 DOI: 10.1590/1414-431x2021e11592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
Cervical cancer (CC) patients have a poor prognosis due to the high recurrence rate. However, there are still no effective molecular signatures to predict the recurrence and survival rates for CC patients. Here, we aimed to identify a novel signature based on three types of RNAs [messenger RNA (mRNAs), microRNA (miRNAs), and long non-coding RNAs (lncRNAs)]. A total of 763 differentially expressed mRNAs (DEMs), 46 lncRNAs (DELs), and 22 miRNAs (DEMis) were identified between recurrent and non-recurrent CC patients using the datasets collected from the Gene Expression Omnibus (GSE44001; training) and The Cancer Genome Atlas (RNA- and miRNA-sequencing; testing) databases. A competing endogenous RNA network was constructed based on 23 DELs, 15 DEMis, and 426 DEMs, in which 15 DELs, 13 DEMis, and 390 DEMs were significantly associated with disease-free survival (DFS). A prognostic signature, containing two DELs (CD27-AS1, LINC00683), three DEMis (hsa-miR-146b, hsa-miR-1238, hsa-miR-4648), and seven DEMs (ARMC7, ATRX, FBLN5, GHR, MYLIP, OXCT1, RAB39A), was developed after LASSO analysis. The built risk score could effectively separate the recurrence rate and DFS of patients in the high- and low-risk groups. The accuracy of this risk score model for DFS prediction was better than that of the FIGO (International Federation of Gynecology and Obstetrics) staging (the area under receiver operating characteristic curve: training, 0.954 vs 0.501; testing, 0.882 vs 0.656; and C-index: training, 0.855 vs 0.539; testing, 0.711 vs 0.508). In conclusion, the high predictive accuracy of our signature for DFS indicated its potential clinical application value for CC patients.
Collapse
Affiliation(s)
- Mengxiong Li
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaohui Tian
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongling Guo
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoyu Xu
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yun Liu
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiulan Hao
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hui Fei
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
8
|
Lopacinska-Jørgensen J, Oliveira DVNP, Wayne Novotny G, Høgdall CK, Høgdall EV. Integrated microRNA and mRNA signatures associated with overall survival in epithelial ovarian cancer. PLoS One 2021; 16:e0255142. [PMID: 34320033 PMCID: PMC8318284 DOI: 10.1371/journal.pone.0255142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OC), the eighth-leading cause of cancer-related death among females worldwide, is mainly represented by epithelial OC (EOC) that can be further subdivided into four subtypes: serous (75%), endometrioid (10%), clear cell (10%), and mucinous (3%). Major reasons for high mortality are the poor biological understanding of the OC mechanisms and a lack of reliable markers defining each EOC subtype. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression primarily by targeting messenger RNA (mRNA) transcripts. Their aberrant expression patterns have been associated with cancer development, including OC. However, the role of miRNAs in tumorigenesis is still to be determined, mainly due to the lack of consensus regarding optimal methodologies for identification and validation of miRNAs and their targets. Several tools for computational target prediction exist, but false interpretations remain a problem. The experimental validation of every potential miRNA-mRNA pair is not feasible, as it is laborious and expensive. In this study, we analyzed the correlation between global miRNA and mRNA expression patterns derived from microarray profiling of 197 EOC patients to identify the signatures of miRNA-mRNA interactions associated with overall survival (OS). The aim was to investigate whether these miRNA-mRNA signatures might have a prognostic value for OS in different subtypes of EOC. The content of our cohort (162 serous carcinomas, 15 endometrioid carcinomas, 11 mucinous carcinomas, and 9 clear cell carcinomas) reflects a real-world scenario of EOC. Several interaction pairs between 6 miRNAs (hsa-miR-126-3p, hsa-miR-223-3p, hsa-miR-23a-5p, hsa-miR-27a-5p, hsa-miR-486-5p, and hsa-miR-506-3p) and 8 mRNAs (ATF3, CH25H, EMP1, HBB, HBEGF, NAMPT, POSTN, and PROCR) were identified and the findings appear to be well supported by the literature. This indicates that our study has a potential to reveal miRNA-mRNA signatures relevant for EOC. Thus, the evaluation on independent cohorts will further evaluate the performance of such findings.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/mortality
- Adenocarcinoma, Mucinous/pathology
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/mortality
- Carcinoma, Endometrioid/pathology
- Databases, Genetic
- Female
- Gene Regulatory Networks/genetics
- Humans
- MicroRNAs/metabolism
- Middle Aged
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- RNA, Messenger/metabolism
- Survival Rate
Collapse
Affiliation(s)
| | | | - Guy Wayne Novotny
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | - Claus K. Høgdall
- Department of Gynaecology, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid V. Høgdall
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
- * E-mail:
| |
Collapse
|
9
|
Li H, Wu N, Liu ZY, Chen YC, Cheng Q, Wang J. Development of a novel transcription factors-related prognostic signature for serous ovarian cancer. Sci Rep 2021; 11:7207. [PMID: 33785763 PMCID: PMC8010122 DOI: 10.1038/s41598-021-86294-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggest that transcription factors (TFs) play vital roles in serous ovarian cancer (SOC). In the present study, TFs mRNA expression profiles of 564 SOC subjects in the TCGA database, and 70 SOC subjects in the GEO database were screened. A 17-TFs related prognostic signature was constructed using lasso cox regression and validated in the TCGA and GEO cohorts. Consensus clustering analysis was applied to establish a cluster model. The 17-TFs related prognostic signature, risk score and cluster models were effective at accurately distinguishing the overall survival of SOC. Analysis of genomic alterations were used to elaborate on the association between the 17-TFs related prognostic signature and genomic aberrations. The GSEA assay results suggested that there was a significant difference in the inflammatory and immune response pathways between the high-risk and low-risk score groups. The potential immune infiltration, immunotherapy, and chemotherapy responses were analyzed due to the significant difference in the regulation of lymphocyte migration and T cell-mediated cytotoxicity between the two groups. The results indicated that patients with low-risk score were more likely to respond anti-PD-1, etoposide, paclitaxel, and veliparib but not to gemcitabine, doxorubicin, docetaxel, and cisplatin. Also, the prognostic nomogram model revealed that the risk score was a good prognostic indicator for SOC patients. In conclusion, we explored the prognostic values of TFs in SOC and developed a 17-TFs related prognostic signature to predict the survival of SOC patients.
Collapse
Affiliation(s)
- He Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Zhao-Yi Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Yong-Chang Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Jing Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Chen WJ, Wu HT, Li CL, Lin YK, Fang ZX, Lin WT, Liu J. Regulatory Roles of Six-Transmembrane Epithelial Antigen of the Prostate Family Members in the Occurrence and Development of Malignant Tumors. Front Cell Dev Biol 2021; 9:752426. [PMID: 34778263 PMCID: PMC8586211 DOI: 10.3389/fcell.2021.752426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
The human six-transmembrane epithelial antigen of the prostate (STEAP) proteins, which include STEAP1-4 and atypical STEAP1B, contain six transmembrane domains and are located in the cell membrane. STEAPs are considered archaeal metal oxidoreductases, based on their heme groups and F420H2:NADP+ oxidoreductase (FNO)-like structures, and play an important role in cell metal metabolism. Interestingly, STEAPs not only participate in biological processes, such as molecular transport, cell cycling, immune response, and intracellular and extracellular activities, but also are closely related to the occurrence and development of several diseases, especially malignant tumors. Up to now, the expression patterns of STEAPs have been found to be diverse in different types of tumors, with controversial participation in different aspects of malignancy, such as cell proliferation, migration, invasion, apoptosis, and therapeutic resistance. It is clinically important to explore the potential roles of STEAPs as new immunotherapeutic targets for the treatment of different malignant tumors. Therefore, this review focuses on the molecular mechanism and function of STEAPs in the occurrence and development of different cancers in order to understand the role of STEAPs in cancer and provide a new theoretical basis for the treatment of diverse cancers.
Collapse
Affiliation(s)
- Wen-Jia Chen
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Lan Li
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Yi-Ke Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Wen-Ting Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
- *Correspondence: Jing Liu,
| |
Collapse
|
11
|
Identification and Validation of an Energy Metabolism-Related lncRNA-mRNA Signature for Lower-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3708231. [PMID: 32802843 PMCID: PMC7403901 DOI: 10.1155/2020/3708231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Energy metabolic processes play important roles for tumor malignancy, indicating that related protein-coding genes and regulatory upstream genes (such as long noncoding RNAs (lncRNAs)) may represent potential biomarkers for prognostic prediction. This study will develop a new energy metabolism-related lncRNA-mRNA prognostic signature for lower-grade glioma (LGG) patients. A GSE4290 dataset obtained from Gene Expression Omnibus was used for screening the differentially expressed genes (DEGs) and lncRNAs (DELs). The Cancer Genome Atlas (TCGA) dataset was used as the prognosis training set, while the Chinese Glioma Genome Atlas (CGGA) was for the validation set. Energy metabolism-related genes were collected from the Molecular Signatures Database (MsigDB), and a coexpression network was established between energy metabolism-related DEGs and DELs to identify energy metabolism-related DELs. Least absolute shrinkage and selection operator (LASSO) analysis was performed to filter the prognostic signature which underwent survival analysis and nomogram construction. A total of 1613 DEGs and 37 DELs were identified between LGG and normal brain tissues. One hundred and ten DEGs were overlapped with energy metabolism-related genes. Twenty-seven DELs could coexpress with 67 metabolism-related DEGs. LASSO regression analysis showed that 9 genes in the coexpression network were the optimal signature and used to construct the risk score. Kaplan-Meier curve analysis showed that patients with a high risk score had significantly worse OS than those with a low risk score (TCGA: HR = 3.192, 95%CI = 2.182‐4.670; CGGA: HR = 1.922, 95%CI = 1.431‐2.583). The predictive accuracy of the risk score was also high according to the AUC of the ROC curve (TCGA: 0.827; CGGA: 0.806). Multivariate Cox regression analyses revealed age, IDH1 mutation, and risk score as independent prognostic factors, and thus, a prognostic nomogram was established based on these three variables. The excellent prognostic performance of the nomogram was confirmed by calibration and discrimination analyses. In conclusion, our findings provided a new biomarker for the stratification of LGG patients with poor prognosis.
Collapse
|