1
|
Tao X, Li J, He J, Jiang Y, Liu C, Cao W, Wu H. Pinellia ternata (Thunb.) Breit. Attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-kB and NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116720. [PMID: 37268256 DOI: 10.1016/j.jep.2023.116720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia ternata (Thunb.) Breit. (PT) has been demonstrated to be effective against the allergic airway inflammation (AAI) in clinical practices, especially in cold asthma (CA). Until now, the active ingredients, protective effect, and possible mechanism of PT against CA remain unknown. AIM OF THE STUDY The aim of this investigation was to examine the therapeutic impact and elucidate the underlying mechanism of PT on the AAI of CA. METHODS The compositions of PT water extract were determined via the UPLC-Q-TOF-MS/MS. The ovalbumin (OVA) and cold-water baths were used to induce CA in female mice. Morphological characteristic observations, expectorant effect, bronchial hyperreactivity (BHR), excessive mucus secretion, and inflammatory factors were used to uncover the treatment effect of PT water extract. In addition, the mucin 5AC (MUC5AC) mRNA and protein levels and the aquaporin 5 (AQP5) mRNA and protein levels were detected via qRT-PCR, immunohistochemistry (IHC), and western blotting. Moreover, the protein expressions associated with the TLR4, NF-κB, and NLRP3 signaling pathway were monitored by western blot analysis. RESULTS Thirty-eight compounds were identified from PT water extract. PT showed significant therapeutic effects on mice with cold asthma in terms of expectorant activity, histopathological changes, airway inflammation, mucus secretion, and hyperreactivity. PT exhibited good anti-inflammatory effects in vitro and in vivo. The expression levels of MUC5AC mRNA and protein decreased significantly, while AQP5 expression levels increased significantly in the lung tissues of mice after administration with PT as compared to mice induced by CA. Furthermore, the protein expressions of TLR4, p-iκB, p-p65, IL-1β, IL-18, NLRP3, cleaved caspase-1, and ASC were markedly reduced following PT treatment. CONCLUSIONS PT attenuated the AAI of CA by modulating Th1- and Th2-type cytokines. PT could inhibit the TLR4-medicated NF-kB signaling pathway and activate the NLRP3 inflammasome to reduce CA. This study provides an alternative therapeutic agent of the AAI of CA after administration with PT.
Collapse
Affiliation(s)
- Xingbao Tao
- College of Pharmacy, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China; Post-Doctoral Research Center, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Juan Li
- Rehabilitation Center, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Jun He
- College of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yunbin Jiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Chunshan Liu
- Rehabilitation Center, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Weiguo Cao
- College of Pharmacy, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Samarpita S, Li X. Leveraging Exosomes as the Next-Generation Bio-Shuttles: The Next Biggest Approach against Th17 Cell Catastrophe. Int J Mol Sci 2023; 24:ijms24087647. [PMID: 37108809 PMCID: PMC10142210 DOI: 10.3390/ijms24087647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the launch of clinical-grade exosomes is rising expeditiously, as they represent a new powerful approach for the delivery of advanced therapies and for diagnostic purposes for various diseases. Exosomes are membrane-bound extracellular vesicles that can act as biological messengers between cells, in the context of health and disease. In comparison to several lab-based drug carriers, exosome exhibits high stability, accommodates diverse cargo loads, elicits low immunogenicity and toxicity, and therefore manifests tremendous perspectives in the development of therapeutics. The efforts made to spur exosomes in drugging the untreatable targets are encouraging. Currently, T helper (Th) 17 cells are considered the most prominent factor in the establishment of autoimmunity and several genetic disorders. Current reports have indicated the importance of targeting the development of Th17 cells and the secretion of its paracrine molecule, interleukin (IL)-17. However, the present-day targeted approaches exhibit drawbacks, such as high cost of production, rapid transformation, poor bioavailability, and importantly, causing opportunistic infections that ultimately hamper their clinical applications. To overcome this hurdle, the potential use of exosomes as vectors seem to be a promising approach for Th17 cell-targeted therapies. With this standpoint, this review discusses this new concept by providing a snapshot of exosome biogenesis, summarizes the current clinical trials of exosomes in several diseases, analyzes the prospect of exosomes as an established drug carrier and delineates the present challenges, with an emphasis on their practical applications in targeting Th17 cells in diseases. We further decode the possible future scope of exosome bioengineering for targeted drug delivery against Th17 cells and its catastrophe.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Peng H, Yang X, Fang H, Zhang Z, Zhao J, Zhao T, Liu J, Li Y. Simultaneous effect of different chromatographic conditions on the chromatographic retention of pentapeptide derivatives (HGRFG and NPNPT). Front Chem 2023; 11:1171824. [PMID: 37143822 PMCID: PMC10151710 DOI: 10.3389/fchem.2023.1171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Oligopeptides exhibit great prospects for clinical application and its separation is of great importance in new drug development. Methods: To accurately predict the retention of pentapeptides with analogous structures in chromatography, the retention times of 57 pentapeptide derivatives in seven buffers at three temperatures and four mobile phase compositions were measured via reversed-phase high-performance liquid chromatography. The parameters ( k H A , k A , and p K a ) of the acid-base equilibrium were obtained by fitting the data corresponding to a sigmoidal function. We then studied the dependence of these parameters on the temperature (T), organic modifier composition (φ, methanol volume fraction), and polarity ( P m N parameter). Finally, we proposed two six-parameter models with (1) pH and T and (2) pH and φ or P m N as the independent variables. These models were validated for their prediction capacities by linearly fitting the predicted retention factor k-value and the experimental k-value. Results: The results showed that log k H A and log k A exhibited linear relationships with 1 / T , φ or P m N for all pentapeptides, especially for the acid pentapeptides. In the model of pH and T, the correlation coefficient (R2) of the acid pentapeptides was 0.8603, suggesting a certain prediction capability of chromatographic retention. Moreover, in the model of pH and φ or P m N , the R2 values of the acid and neutral pentapeptides were greater than 0.93, and the average root mean squared error was approximately 0.3, indicating that the k-values could be effectively predicted. Discussion: In summary, the two six-parameter models were appropriate to characterize the chromatographic retention of amphoteric compounds, especially the acid or neutral pentapeptides, and could predict the chromatographic retention of pentapeptide compounds.
Collapse
Affiliation(s)
- Huan Peng
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xiangrong Yang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Kangya of Ningxia Pharmaceutical Co., Ltd., Yinchuan, China
| | - Huanle Fang
- Medical College, Peihua University, Xi’an, Shaanxi, China
| | - Zhongqi Zhang
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Jinli Zhao
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Te Zhao
- College of Electronic Engineering, Xidian University, Xi’an, Shaanxi, China
| | - Jianli Liu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Medical College, Peihua University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| |
Collapse
|
4
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
5
|
Liu J, Yin J. Immunotherapy With Recombinant Alt a 1 Suppresses Allergic Asthma and Influences T Follicular Cells and Regulatory B Cells in Mice. Front Immunol 2021; 12:747730. [PMID: 34804031 PMCID: PMC8602824 DOI: 10.3389/fimmu.2021.747730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Background Alternaria is a major source of asthma-inducing allergens. Allergen-specific immunotherapy improves the progression of allergic asthma. The current treatment is based on crude Alternaria extracts. Alt a 1 is the predominant allergen in Alternaria. However, the treatment efficacy of recombinant Alt a 1 (rAlt a 1) in an asthmatic animal model and its influence on Tfh and Breg cells are unknown. Objective To explore the therapeutic treatment effects of rAlt a 1 on the progress of an asthmatic mouse model and its effect on Tfh and Breg cells. Methods We synthesized and purified rAlt a 1. Alternaria-sensitized and challenged mice received subcutaneous immunotherapy (SCIT) with four different rAlt a 1 dosages (5, 50, 100, and 150 µg) or PBS only. Finally, lung and airway inflammation, mouse mast cell protease 1 (MMCP-1), serum immunoglobulin responses, Tfh and Breg cell levels, and the correlation between asthmatic features (inflammation grades and IL-4 and IL-10 levels) and these two cell types were measured after Alternaria rechallenge. Results High purity and allergenic potency of rAlt a 1 protein were obtained. Following treatment with four different rAlt a 1 dosages, both lung and airway inflammation ameliorated, including lung pathology, serum MMCP-1 levels, inflammatory cell numbers, and cytokine levels in bronchoalveolar lavage fluid (BALF). Additionally, rAlt a 1-SCIT increased the expression of Alternaria-sIgG1, rAlt a 1-sIgG1, rAlt a 1-sIgG2a, and rAlt a 1-sIgG2b in serum. Moreover, the number and percentage of CXCR5+PD-1+Tfh cells were increased in the PC control, while they decreased in the rAlt a 1-SCIT groups. Meanwhile, the absolute numbers and proportions of Breg cells were evaluated after administration of rAlt a 1. A positive correlation was observed between CXCR5+PD-1+Tfh cells and inflammation grades (r = 0.50, p = 0.01), as well as a slightly strong positive relationship with IL-4 (r = 0.55, p = 0.005) and IL-10 (r = 0.58, p = 0.003) levels; Breg cells showed an opposite correlation with the grades of inflammation (r = -0.68, p = 0.0003), along with a negative correlation to IL-4 (r = -0.61, p = 0.001) and IL-10 (r = -0.53, p = 0.008) levels. Conclusions We verified that treatment with rAlt a 1 can alleviate asthma progression and further have a regulatory effect on Tfh and Breg cells in an Alternaria-induced asthmatic mouse model.
Collapse
Affiliation(s)
- Juan Liu
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine For Diagnosis and Treatment on Allergic Diseases, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine For Diagnosis and Treatment on Allergic Diseases, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| |
Collapse
|
6
|
Liu J, Liang R, Huang H, Zhang Y, Xie A, Zhong Y. Effect of an Antagonistic Peptide of CCR5 on the Expression of Autophagy-related Genes and β-Arrestin 2 in Lung Tissues of Asthmatic Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:106-121. [PMID: 33191680 PMCID: PMC7680831 DOI: 10.4168/aair.2021.13.1.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Purpose The mechanisms of CC chemokine receptor 5 (CCR5) in the process of autophagy remain unknown. In this study, we examined the role of HY peptide, which is an antagonistic peptide specifically binding the second extracellular loop of CCR5, in the expression of autophagy genes and β-arrestin 2 in lung tissues of asthmatic mice. Methods Experimental asthmatic mice were treated with HY peptide and dexamethasone sodium phosphate (Dex). Airway inflammation, autophagy-related genes, autophagic vacuoles (AVs) and β-arrestin 2 were examined in lung tissues, and the correlation between β-arrestin 2 and LC3 expression was assessed. Results HY peptide and Dex treatments alleviate airway inflammation. The expression of autophagy-related genes, such as BECN1, ATG5 and LC3, was decreased in the lung tissues of the asthmatic mice. However, HY peptide and Dex treatments increased the expression of these genes as well as the formation of AVs. Additionally, the expression of the β-arrestin 2 protein was significantly increased in the HY peptide-treated group, and positive cells expressing β-arrestin 2 were mainly located in the membrane and cytoplasm of bronchial epithelial cells. The β-arrestin 2 expression was positively correlated with the expression of LC3 in the model and HY peptide-treated groups. Conclusions HY peptide inhibits airway inflammation, autophagic dysfunction exists in asthmatic mice, and targeting HY peptide increases the expression of autophagy-related genes. Thus, β-arrestin 2 may participate in the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Juan Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rongrong Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huarong Huang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingli Zhang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aicen Xie
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingqiang Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|