1
|
Zhang Z, Zhang D, Lin Q, Cui X. Therapeutically Fine-Tuning Autonomic Nervous System to Treat Sepsis: A New Perspective on the Immunomodulatory Effects of Acupuncture. J Inflamm Res 2024; 17:4373-4387. [PMID: 38988505 PMCID: PMC11233988 DOI: 10.2147/jir.s477181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Recent studies have highlighted the immunomodulatory effects of acupuncture on sepsis and proposed novel non-pharmacological or bioelectronic approaches to managing inflammatory illnesses. Establishing rules for selectively activating sympathetic or vagal nerve-mediated anti-inflammatory pathways using acupuncture has valuable clinical applications. Over the years, studies have revealed the segmental modulatory role of acupuncture in regulating visceral function by targeting the autonomic nervous system (ANS). In this review, we aim to summarize recent findings on acupuncture in treating sepsis, focusing on the underlying ANS mechanism, as well as the rules of acupoint specificity, intensity, frequency, and other parameters utilized in these studies. Mechanistically, the immunomodulatory properties of the sympathetic nervous system have been highlighted. Furthermore, we explore the immunotherapeutic benefits of acupuncture in treating sepsis. A better understanding of the immunoregulatory mechanism of sympathetic nervous system may offer novel approaches for the development of therapeutics to treat or prevent a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Dingdan Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
2
|
Fan X, Liu Y, Li S, Yang Y, Zhao Y, Li W, Hao J, Xu Z, Zhang B, Liu W, Zhang S. Comprehensive landscape-style investigation of the molecular mechanism of acupuncture at ST36 single acupoint on different systemic diseases. Heliyon 2024; 10:e26270. [PMID: 38375243 PMCID: PMC10875596 DOI: 10.1016/j.heliyon.2024.e26270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
The principle of acupoint stimulation efficacy is based on traditional meridian theory. However, the molecular mechanisms underlying the therapeutic effects of acupoints in treating diseases remain unclear in modern scientific understanding. In this study, we selected the ST36 acupoint for investigation and summarized all relevant literature from the PubMed database over the past 10 years. The results indicate that stimulation of ST36 single acupoints has therapeutic effects mainly in models of respiratory, neurological, digestive, endocrine and immune system diseases. And it can affect the inflammatory state, oxidative stress, respiratory mucus secretion, intestinal flora, immune cell function, neurotransmitter transmission, hormone secretion, the network of Interstitial Cells of Cajal (ICC) and glucose metabolism of the organism in these pathological states. Among them, acupuncture at the ST36 single point has the most prominent function in regulating the inflammatory state, which can mainly affect the activation of MAPK signaling pathway and drive the "molecular-cellular" mode involving macrophages, T-lymphocytes, mast cells (MCs) and neuroglial cells as the core to trigger the molecular level changes of the acupuncture point locally or in the target organ tissues, thereby establishing a multi-system, multi-target, multi-level molecular regulating mechanism. This article provides a comprehensive summary and discussion of the molecular mechanisms and effects of acupuncture at the ST36 acupoint, laying the groundwork for future in-depth research on acupuncture point theory.
Collapse
Affiliation(s)
- Xiaojing Fan
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Yunlong Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shanshan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Chinese Medicine, Tianjin, 301617, China
| | - Yongrui Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yinghui Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wenxi Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jiaxin Hao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Chinese Medicine, Tianjin, 301617, China
| | - Bo Zhang
- Department of Automation, Tsinghua University, Institute for TCM-X, Beijing, 100084, China
| | - Wei Liu
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Province Hospital of Chinese Medicine, Hebei Shijiazhuang, 050011, China
| | - Suzhao Zhang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Province Hospital of Chinese Medicine, Hebei Shijiazhuang, 050011, China
| |
Collapse
|
3
|
Shi J, Zhang X, Chen J, Shen R, Cui H, Wu H. Acupuncture and moxibustion therapy for cognitive impairment: the microbiome-gut-brain axis and its role. Front Neurosci 2024; 17:1275860. [PMID: 38274501 PMCID: PMC10808604 DOI: 10.3389/fnins.2023.1275860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Cognitive impairment poses a significant burden on individuals, families, and society worldwide. Despite the lack of effective treatment strategies, emerging evidence suggests that the microbiome-gut-brain (MGB) axis may play a critical role in the pathogenesis of cognitive impairment. While targeted treatment is not yet comprehensive, recently, acupuncture and moxibustion therapy has participated increasingly in the treatment of degenerative diseases and has achieved a certain therapeutic effect. In this review, the possible mechanisms by which acupuncture and moxibustion therapy may improve cognitive impairment through the MGB axis are reviewed, including regulating gut microbial homeostasis, improving intestinal inflammation mediated by the neuroendocrine-immune system, and enhancing intestinal barrier function. We also discuss common acupoints and corresponding mechanism analysis to provide insights into further exploration of mechanisms that target the MGB axis and thereby intervene in cognitive impairment.
Collapse
Affiliation(s)
- Jiatian Shi
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Chen
- Department of Mental Health, Shanghai Mental Health Center, Shanghai, China
| | - Ruishi Shen
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huashun Cui
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Department of Acupuncture and Moxibustion, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Lu X, Zhang M, Ma Y, Li G, Zhao X, Qian W. Protective effect of Limosilactobacillus reuteri-fermented yogurt on mouse intestinal barrier injury induced by enterotoxigenic Escherichia coli. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7494-7505. [PMID: 37411001 DOI: 10.1002/jsfa.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is a pathogen that causes traveler's diarrhea, for which an effective vaccine is lacking. Previous studies showed that Limosilactobacillus reuteri could inhibit E. coli, effectively increase the expression of its tight junction protein, and reduce the adhesion of ETEC to the intestinal epithelial Caco-2 cell line. In this study, three kinds of yogurt with different starter cultures were first prepared: Lm. reuteri yogurt (fermented by Lm. reuteri alone), traditional yogurt (fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus at a ratio of 1:1) and mixed yogurt (fermented by Lm. reuteri, S. thermophilus and L. delbrueckii subsp. bulgaricus at a ratio of 1:1:1). The physiological properties, oxidative stress, intestinal barrier function, tight junction protein, pathological conditions and intestinal microbiota composition were investigated. RESULTS The data showed that Lm. reuteri-fermented yogurt pregavage could effectively alleviate the intestinal barrier impairment caused by ETEC in mice. It alleviated intestinal villus shortening and inflammatory cell infiltration, decreased plasma diamine oxidase concentration and increased claudin-1 and occludin expression in the jejunum of ETEC-infected mice. In addition, Lm. reuteri-fermented yogurt significantly reduced the ETEC load in fecal samples, reversed the increase in Pseudomonadota abundance and decreased Bacteroidota abundance caused by ETEC infection. Furthermore, the composition of the intestinal microbiota could maintain a stable state similar to that in healthy mice. CONCLUSION These findings indicate that Lm. reuteri-fermented yogurt could alleviate intestinal barrier damage, inhibit ETEC growth and maintain the stability of the intestinal microbiota during ETEC infection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Mingxin Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yuzhe Ma
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guohua Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Weisheng Qian
- Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Yang L, Zhou D, Cao J, Shi F, Zeng J, Zhang S, Yan G, Chen Z, Chen B, Guo Y, Lin X. Revealing the biological mechanism of acupuncture in alleviating excessive inflammatory responses and organ damage in sepsis: a systematic review. Front Immunol 2023; 14:1242640. [PMID: 37753078 PMCID: PMC10518388 DOI: 10.3389/fimmu.2023.1242640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023] Open
Abstract
Sepsis is a systemic inflammation caused by a maladjusted host response to infection. In severe cases, it can cause multiple organ dysfunction syndrome (MODS) and even endanger life. Acupuncture is widely accepted and applied in the treatment of sepsis, and breakthroughs have been made regarding its mechanism of action in recent years. In this review, we systematically discuss the current clinical applications of acupuncture in the treatment of sepsis and focus on the mechanisms of acupuncture in animal models of systemic inflammation. In clinical research, acupuncture can not only effectively inhibit excessive inflammatory reactions but also improve the immunosuppressive state of patients with sepsis, thus maintaining immune homeostasis. Mechanistically, a change in the acupoint microenvironment is the initial response link for acupuncture to take effect, whereas PROKR2 neurons, high-threshold thin nerve fibres, cannabinoid CB2 receptor (CB2R) activation, and Ca2+ influx are the key material bases. The cholinergic anti-inflammatory pathway of the vagus nervous system, the adrenal dopamine anti-inflammatory pathway, and the sympathetic nervous system are key to the transmission of acupuncture information and the inhibition of systemic inflammation. In MODS, acupuncture protects against septic organ damage by inhibiting excessive inflammatory reactions, resisting oxidative stress, protecting mitochondrial function, and reducing apoptosis and tissue or organ damage.
Collapse
Affiliation(s)
- Lin Yang
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dan Zhou
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaojiao Cao
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangyuan Shi
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaming Zeng
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siqi Zhang
- Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guorui Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Pharmacy Department, Tianjin, China
| | - Zhihan Chen
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Hua Z, Wang Y, Chen W, Li W, Shen J. Emodin protects against intestinal dysfunction and enhances survival in rat model of septic peritonitis through anti-inflammatory actions. Immun Inflamm Dis 2023; 11:e942. [PMID: 37647455 PMCID: PMC10461418 DOI: 10.1002/iid3.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Sepsis is a significant contributor to organ function damage or failure that results in intestinal dysfunction. Emodin (Emo) has received much attention for its notable anti-inflammatory and antibacterial properties. We aimed to explore the function of Emo on sepsis. METHODS Sprague Dawley (SD) rats were pretreated with 20 or 40 mg/kg of Emo, followed by using cecal ligation and perforation to establish sepsis models. Hereafter, blood glucose levels, biochemical parameters, and inflammatory cytokines were measured. Additionally, ileal myeloperoxidase (MPO) activity was also measured. Diamine oxidase (DAO) level in plasma, fluorescein isothiocyanate-dextran 40 (FD-40) level in serum, bacteria number in blood and peritoneal fluid, histopathological changes of ileum, and tight junction (TJ) protein expressions in ileum were tested to evaluate the barrier function. Furthermore, CD4+ and CD8+ T cells' percentages were evaluated by flow cytometry. Finally, rats' survival rate was calculated as live rats divided by the total number of rats. RESULTS Emo pretreatment not only decreased blood glucose level, but also downregulated triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum creatinine (SCr), blood urea nitrogen (BUN) contents for sepsis rats, especially for the high dose of Emo (p < .05). Furthermore, Emo inhibited MPO activity and inflammatory factor release (p < .05). Crucially, after Emo administration, the barrier function of ileum was enhanced, evidenced by the reduced DAO, FD-40 levels, decreased bacteria number, alleviated pathological damage in ileum and increased TJ protein expressions (p < .05). Rats treated with Emo exhibited increased percentages of CD8+ and CD4+ T cells (p < .05), as well as an improved survival rate. CONCLUSION Emo exhibited a remarkable ability to attenuate sepsis by restoring intestinal dysfunction and improving survival rates, and the mechanism was closely related to anti-inflammatory properties, which provided new solid evidence for the use of Emo in treating sepsis.
Collapse
Affiliation(s)
- Zhongjie Hua
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| | - Yaqin Wang
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| | - Weiping Chen
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| | - Wei Li
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| | - Jiali Shen
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| |
Collapse
|
7
|
Comparative Study of Different Acupoints for Treating Acute Myocardial Ischemia in Mice. J Cardiovasc Transl Res 2023:10.1007/s12265-022-10346-6. [PMID: 36689154 DOI: 10.1007/s12265-022-10346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/09/2022] [Indexed: 01/24/2023]
Abstract
Acupuncture point specificity has been recognized as a key scientific issue in traditional Chinese medicine (TCM), but there is limited clinical trial or animal study to verify the characteristics of PC6, BL15, and ST36 in the protection from myocardial injury. We aimed to compare the effects among these three acupoints on the acute myocardial infarction mice model and to explore possible mechanisms for the first time. We found that PC6 is the most appropriate acupoint to deliver efficacy and safety to treat acute MI in mice. BL15 stimulation improved the systolic function, but increased the risk of arrhythmia. ST36 only slightly attenuated systolic function and had no effect on arrhythmia during MI. RNA profiles of skin tissue in local acupoints demonstrated that the most altered DEGs and related pathways may partly support its best effects of PC6 treatment on MI injury, and support the observed phenomenon of the acupoint specificity.
Collapse
|
8
|
Electroacupuncture at Zusanli (ST36), Guanyuan (CV4), and Qihai (CV6) Acupoints Regulates Immune Function in Patients with Sepsis via the PD-1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7037497. [PMID: 35860804 PMCID: PMC9293513 DOI: 10.1155/2022/7037497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Objective The present study is aimed at investigating the biochemical and clinical effects of electroacupuncture in patients with sepsis. Methods Patients with sepsis treated at Guangdong Provincial Hospital of Chinese Medicine from July 2019 to December 2020 were included. Patients were randomly assigned to treatment with routine Western medicine (WM group) or treatment with Western medicine plus electroacupuncture based on Western medicine (EA group). Indices associated with immune function and clinical efficacy were determined before and at 3 and 5 days after treatment. Indicators of immune function included the percentage of T lymphocyte subsets, natural killer (NK) cells, and soluble programmed death protein 1 (sPD-1) levels. Indicators of clinical efficacy included infection-related indicators in whole blood; levels of tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), and interferon-γ (INF-γ); and assessments using acute physiology and chronic health evaluation-II (APACHE-II) and sequential organ failure assessment (SOFA) scores. Results Baseline data were not different between WM (N = 30) and EA groups (N = 30). At day 5 following treatment, the level of sPD-1 in the EA group was lower than that in the WM group. Proportions of CD3 + T lymphocytes, CD4 + T lymphocytes, and NK cells, the percentage of lymphocytes, and INF-γ levels in the EA group were significantly higher than those in the WM group. Compared with the WM group, the white blood cell count (WBC), percentage and count of neutrophils, ratio of neutrophils to lymphocytes, and levels of CRP and TNF-α were significantly decreased in the EA group 5 days after treatment. The APACHE-II score of the EA group was significantly lower than that of the WM group 5 days after treatment. Conclusion Electroacupuncture may regulate the immune function of patients with sepsis through the PD-1 pathway to achieve an anti-inflammatory state and improve clinical symptoms.
Collapse
|
9
|
Gao YL, Yao Y, Zhang X, Chen F, Meng XL, Chen XS, Wang CL, Liu YC, Tian X, Shou ST, Chai YF. Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis? Front Immunol 2022; 13:829210. [PMID: 35281010 PMCID: PMC8914284 DOI: 10.3389/fimmu.2022.829210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a syndrome characterized by life-threatening organ dysfunction caused by the dysregulated host response to an infection. Sepsis, especially septic shock and multiple organ dysfunction is a medical emergency associated with high morbidity, high mortality, and prolonged after-effects. Over the past 20 years, regulatory T cells (Tregs) have been a key topic of focus in all stages of sepsis research. Tregs play a controversial role in sepsis based on their heterogeneous characteristics, complex organ/tissue-specific patterns in the host, the multi-dimensional heterogeneous syndrome of sepsis, the different types of pathogenic microbiology, and even different types of laboratory research models and clinical research methods. In the context of sepsis, Tregs may be considered both angels and demons. We propose that the symptoms and signs of sepsis can be attenuated by regulating Tregs. This review summarizes the controversial roles and Treg checkpoints in sepsis.
Collapse
Affiliation(s)
- Yu-lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai, ; Yu-lei Gao,
| | - Ying Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People’s Hospital of Shandong Province, Rizhao, China
| | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang-long Meng
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin-sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao-lan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai, ; Yu-lei Gao,
| |
Collapse
|
10
|
Oh JE, Kim SN. Anti-Inflammatory Effects of Acupuncture at ST36 Point: A Literature Review in Animal Studies. Front Immunol 2022; 12:813748. [PMID: 35095910 PMCID: PMC8790576 DOI: 10.3389/fimmu.2021.813748] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
So far, a number of acupuncture studies have shown anti-inflammatory effects of acupuncture treatment, mostly known at specific point ST36. However, there is no literature that oversaw the inflammation-regulatory effects of acupuncture in each tissue. Therefore, we investigated how acupuncture at specific acupoint ST36 regulates inflammation and its underlying mechanisms. We searched literatures on PubMed until July 2021 using the keywords “animal, acupuncture, ST36, inflammation, immune,” and 292 literatures were searched. We ultimately selected 69 studies to determine the anti-inflammatory actions of acupuncture at ST36 and classified the changes of inflammatory mediators according to target regions. Forty-three studies were included in body fluids, 27 studies in the digestive system, 17 studies in the nervous system, and 30 studies in other tissues or organs. In this review, we found that acupuncture at ST36 has clinical benefits in relieving inflammation through several mechanisms such as vagus nerve activation, toll-like receptor 4 (TLR4)/NF-κB signaling, macrophage polarization, mitogen-activated protein kinase (MAPK) signaling pathway, and cholinergic anti-inflammatory pathway. We expect that these data will inform further studies related to ST36 acupuncture on inflammation.
Collapse
Affiliation(s)
- Ji-Eun Oh
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| |
Collapse
|
11
|
Li N, Guo Y, Gong Y, Zhang Y, Fan W, Yao K, Chen Z, Dou B, Lin X, Chen B, Chen Z, Xu Z, Lyu Z. The Anti-Inflammatory Actions and Mechanisms of Acupuncture from Acupoint to Target Organs via Neuro-Immune Regulation. J Inflamm Res 2022; 14:7191-7224. [PMID: 34992414 PMCID: PMC8710088 DOI: 10.2147/jir.s341581] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation plays a significant role in the occurrence and development of multiple diseases. This study comprehensively reviews and presents literature from the last five years, showing that acupuncture indeed exerts strong anti-inflammatory effects in multiple biological systems, namely, the immune, digestive, respiratory, nervous, locomotory, circulatory, endocrine, and genitourinary systems. It is well known that localized acupuncture-mediated anti-inflammatory effects involve the regulation of multiple populations and functions of immune cells, including macrophages, granulocytes, mast cells, and T cells. In acupuncture stimulation, macrophages transform from the M1 to the M2 phenotype and the negative TLR4 regulator PPARγ is activated to inhibit the intracellular TLR/MyD88 and NOD signaling pathways. The downstream IκBα/NF-κB and P38 MAPK pathways are subsequently inhibited by acupuncture, followed by suppressed production of inflammasome and proinflammatory mediators. Acupuncture also modulates the balance of helper T cell populations. Furthermore, it inhibits oxidative stress by enhancing SOD activity via the Nrf2/HO-1 pathway and eliminates the generation of oxygen free radicals, thereby preventing inflammatory cell infiltration. The anti-inflammatory effects of acupuncture on different biological systems are also specific to individual organ microenvironments. As part of its anti-inflammatory action, acupuncture deforms connective tissue and upregulates the secretion of various molecules in acupoints, further activating the NF-κB, MAPK, and ERK pathways in mast cells, fibroblasts, keratinocytes, and monocytes/macrophages. The somatic afferents present in acupuncture-activated acupoints also convey sensory signals to the spinal cord, brainstem, and hypothalamic neurons. Upon information integration in the brain, acupuncture further stimulates multiple neuro-immune pathways, including the cholinergic anti-inflammatory, vagus-adrenal medulla-dopamine, and sympathetic pathways, as well as the hypothalamus-pituitary-adrenal axis, ultimately acting immune cells via the release of crucial neurotransmitters and hormones. This review provides a scientific and reliable basis and viewpoints for the clinical application of acupuncture in various inflammatory conditions.
Collapse
Affiliation(s)
- Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Wen Fan
- Suzuka University of Medical Science, Suzuka City, Japan
| | - Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zhongxi Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| |
Collapse
|