1
|
Yoshioka H, Ueta M, Fukuoka H, Yokoi N, Mizushima K, Naito Y, Kinoshita S, Sotozono C. Alteration of Gene Expression in Pathological Keratinization of the Ocular Surface. Invest Ophthalmol Vis Sci 2024; 65:37. [PMID: 38935029 PMCID: PMC11216254 DOI: 10.1167/iovs.65.6.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose To investigate the molecular mechanism of pathological keratinization in the chronic phase of ocular surface (OS) diseases. Methods In this study, a comprehensive gene expression analysis was performed using oligonucleotide microarrays on OS epithelial cells obtained from three patients with pathological keratinization (Stevens-Johnson syndrome [n = 1 patient], ocular cicatricial pemphigoid [n = 1 patient], and anterior staphyloma [n = 1 patient]). The controls were three patients with conjunctivochalasis. The expression in some transcripts was confirmed using quantitative real-time PCR. Results Compared to the controls, 3118 genes were significantly upregulated by a factor of 2 or more than one-half in the pathological keratinized epithelial cells (analysis of variance P < 0.05). Genes involved in keratinization, lipid metabolism, and oxidoreductase were upregulated, while genes involved in cellular response, as well as known transcription factors (TFs), were downregulated. Those genes were further analyzed with respect to TFs and retinoic acid (RA) through gene ontology analysis and known reports. The expression of TFs MYBL2, FOXM1, and SREBF2, was upregulated, and the TF ELF3 was significantly downregulated. The expression of AKR1B15, RDH12, and CRABP2 (i.e., genes related to RA, which is known to suppress keratinization) was increased more than twentyfold, whereas the expression of genes RARB and RARRES3 was decreased by 1/50. CRABP2, RARB, and RARRES3 expression changes were also confirmed by qRT-PCR. Conclusions In pathological keratinized ocular surfaces, common transcript changes, including abnormalities in vitamin A metabolism, are involved in the mechanism of pathological keratinization.
Collapse
Affiliation(s)
- Hokoru Yoshioka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Fukuoka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Kim YA, Choi Y, Kim TG, Jeong J, Yu S, Kim T, Sheen K, Lee Y, Choi T, Park YH, Kang MS, Kim MS. Multi-System-Level Analysis with RNA-Seq on Pterygium Inflammation Discovers Association between Inflammatory Responses, Oxidative Stress, and Oxidative Phosphorylation. Int J Mol Sci 2024; 25:4789. [PMID: 38732006 PMCID: PMC11083828 DOI: 10.3390/ijms25094789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
A pterygium is a common conjunctival degeneration and inflammatory condition. It grows onto the corneal surface or limbus, causing blurred vision and cosmetic issues. Ultraviolet is a well-known risk factor for the development of a pterygium, although its pathogenesis remains unclear, with only limited understanding of its hereditary basis. In this study, we collected RNA-seq from both pterygial tissues and conjunctival tissues (as controls) from six patients (a total of twelve biological samples) and retrieved publicly available data, including eight pterygium samples and eight controls. We investigated the intrinsic gene regulatory mechanisms closely linked to the inflammatory reactions of pterygiums and compared Asian (Korea) and the European (Germany) pterygiums using multiple analysis approaches from different perspectives. The increased expression of antioxidant genes in response to oxidative stress and DNA damage implies an association between these factors and pterygium development. Also, our comparative analysis revealed both similarities and differences between Asian and European pterygiums. The decrease in gene expressions involved in the three primary inflammatory signaling pathways-JAK/STAT, MAPK, and NF-kappa B signaling-suggests a connection between pathway dysfunction and pterygium development. We also observed relatively higher activity of autophagy and antioxidants in the Asian group, while the European group exhibited more pronounced stress responses against oxidative stress. These differences could potentially be necessitated by energy-associated pathways, specifically oxidative phosphorylation.
Collapse
Affiliation(s)
- Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yueun Choi
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Tae Gi Kim
- Department of Ophthalmology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| | - Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Sanghyeon Yu
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Taeyoon Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Kisung Sheen
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yoonsung Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
| | - Taesoo Choi
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Min Seok Kang
- Department of Ophthalmology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea
| | - Man S. Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
| |
Collapse
|
3
|
Ghafouri-Fard S, Askari A, Hussen BM, Rasul MF, Taheri M, Ayatollahi SA. A review on the role of LINC00472 in malignant and non-malignant disorders. Pathol Res Pract 2023; 247:154549. [PMID: 37235910 DOI: 10.1016/j.prp.2023.154549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Long intergenic non-protein coding RNA 472 (LINC00472) has been shown to regulate diverse cellular functions and contribute to the etiology of human disorders. LINC00472 gene is located on 6q13 and has different alternatively spliced transcripts. Expression pattern and function of LINC00472 have been evaluated in different types of cancers and some other disorders, including atherosclerosis, sepsis-induced acute hepatic injury, atrial fibrillation, neuropathic pain, primary biliary cholangitis and sepsis-induced cardiac dysfunction. This lincRNA can serve as a sponge for miR-24-3p, miR-196b-5p, miR-23a-3p, miR-93-5p, miR-4311, miR-455-3p and a number of other miRNAs. LINC00472 is able to regulate several pathways, including MEK/ERK, NF-kB, PTEN/PI3K/AKT, and STAT3 signaling pathways. This raises some concerning aspects that need to be investigated further and clarified in relation to diseases. Increasing our understanding of LINC00472's crucial roles will open new doors for creating effective therapeutic approaches against cancer and related diseases. The current study aims at providing an overview of functions of LINC00472 in malignant and non-malignant disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
4
|
Key Genes of Immunity Associated with Pterygium and Primary Sjögren's Syndrome. Int J Mol Sci 2023; 24:ijms24032047. [PMID: 36768371 PMCID: PMC9916617 DOI: 10.3390/ijms24032047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Pterygium and primary Sjögren's Syndrome (pSS) share many similarities in clinical symptoms and ocular pathophysiological changes, but their etiology is unclear. To identify the potential genes and pathways related to immunity, two published datasets, GSE2513 containing pterygium information and GSE176510 containing pSS information, were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) of pterygium or pSS patients compared with healthy control conjunctiva, and the common DEGs between them were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted for common DEGs. The protein-protein interaction (PPI) network was constructed using the STRING database to find the hub genes, which were verified in clinical samples. There were 14 co-upregulated DEGs. The GO and KEGG analyses showed that these common DEGs were enriched in pathways correlated with virus infection, antigen processing and presentation, nuclear factor-kappa B (NF-κB) and Th17 cell differentiation. The hub genes (IL1R1, ICAM1, IRAK1, S100A9, and S100A8) were selected by PPI construction. In the era of the COVID-19 epidemic, the relationship between virus infection, vaccination, and the incidence of pSS and pterygium growth deserves more attention.
Collapse
|
5
|
Yu J, Luo J, Li P, Chen X, Zhang G, Guan H. Identification of the circRNA-miRNA-mRNA Regulatory Network in Pterygium-Associated Conjunctival Epithelium. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2673890. [PMID: 36398070 PMCID: PMC9666032 DOI: 10.1155/2022/2673890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 10/07/2023]
Abstract
To investigate the regulatory mechanism of pterygium formation, we detected differentially expressed messenger RNAs (DE-mRNAs) and differentially expressed circular RNAs (DE-circRNAs) in pterygium-associated conjunctival epithelium (PCE) and normal conjunctival epithelium (NCE). Genome-wide mRNA and circRNA expression profiles of PCE and NCE were determined using high-throughput sequencing. Bioinformatics analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) analysis, were conducted. The microRNAs (miRNAs) interacting with the hub DE-mRNAs and DE-circRNAs were predicted and verified using real-time quantitative PCR (RT-qPCR). The data showed that there were 536 DE-mRNAs (280 upregulated and 256 downregulated mRNAs) and 78 DE-circRNAs (20 upregulated and 58 downregulated circRNAs) in PCE. KEGG enrichment analysis indicated that the DE-mRNAs were mainly involved in the following biological processes: IL-17 signalling pathway, viral protein interaction with cytokine and cytokine receptor, cytokine-cytokine receptor interaction, ECM-receptor interaction, and focal adhesion. The GSEA results revealed that the epithelial mesenchymal transition (EMT) process was significantly enriched in upregulated mRNAs. The pterygium-associated circRNA-miRNA-mRNA network was established based on the top 10 DE-circRNAs, 4 validated miRNAs (upregulated miR-376a-5p and miR-208a-5p,downregulated miR-203a-3p and miR-200b-3p), and 31 DE-mRNAs. We found that miR-200b-3p, as a regulator of FN1, SDC2, and MEX3D, could be regulated by 5 upregulated circRNAs. In addition, we screened out EMT-related DE-mRNAs, including 6 upregulated DE-mRNAs and 6 downregulated DE-mRNAs. The EMT-related circRNA-miRNA-mRNA network was established with the top 10 circRNAs, 8 validated miRNAs (upregulated miR-17-5p, miR-181a-5p, and miR-106a-5p, downregulated miR-124-3p, miR-9-5p, miR-130b-5p, miR-1-3p, and miR-26b-5P), and 12 EMT-related DE-mRNAs. We found that hsa_circ_0002406 might upregulate FN1 and ADAM12 by sponging miR-26b-5p and miR-1-3p, respectively, thus promoting EMT in pterygium. Briefly, the study provides a novel viewpoint on the molecular pathological mechanisms in pterygium formation. CircRNA-miRNA-mRNA regulatory networks participate in the pathogenesis of pterygium and might become promising targets for pterygium prevention and treatment.
Collapse
Affiliation(s)
- Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jiawei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Wu X, Dong S, Xu Y, Zhu G, Yan M. Evaluation of JUN, FN1 and LAMB1 polymorphisms in pterygium in a Chinese Han population. Ophthalmic Genet 2022; 43:488-495. [PMID: 35445627 DOI: 10.1080/13816810.2022.2065511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To explore the underlying molecular mechanism of pterygium and identify the key genes regulating the development of pterygium. METHODS Differentially expressed mRNAs were obtained from the Gene Expression Omnibus (GEO) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the DAVID (http://david.abcc.ncifcrf.gov/). The differential expressions of hub genes were verified using the reverse transcription-real-time fluorescent quantitative PCR (RT-qPCR). The function of the hub genes was further confirmed based on associations between the single nucleotide polymorphisms (SNPs) in hub genes and pterygium. The genotyping results were analyzed using SNPStats online software in five gene models, including codominant, dominant, recessive, overdominant, and log-additive. Five gene models were analyzed using SNPStats. RESULTS We found that 240 genes were significantly differentially expressed. Functional enrichment analysis showed that focal adhesion pathway is extremely meaningful, among which JUN, FN1, and LAMB1 were verified to significantly differentially express in pterygium (P = 0.0011, P = 0.0018, and P = 0.0050, respectively). However, the all nine candidate SNPs (rs11688, rs3748814 in JUN; rs1263, rs1132741, rs1250259 in FN1; rs20556, rs35710474, rs25659, rs4320486 in LAMB1), were not statistically associated with pterygium. CONCLUSION Our results demonstrated that JUN, FN1, and LAMB1 polymorphisms were not associated with susceptibility to pterygium in Chinese Han population. Considering the fact that these three genes are differentially expressed in pterygium, further research is needed to explain its involvement in pterygium.
Collapse
Affiliation(s)
- Xiying Wu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shiqi Dong
- Department of Cataract, Hankou Aier Eye Hospital, Wuhan, Hubei Province, China
| | - Yuting Xu
- Department of Pediatric Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ge Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ming Yan
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
The Profile of MicroRNA Expression and Potential Role in the Regulation of Drug-Resistant Genes in Cisplatin- and Paclitaxel-Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23010526. [PMID: 35008952 PMCID: PMC8745655 DOI: 10.3390/ijms23010526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy. The high mortality results from late diagnosis and the development of drug resistance. Drug resistance results from changes in the expression of different drug-resistance genes that may be regulated miRNA. The main aim of our study was to detect changes in miRNA expression levels in two cisplatin (CIS) and two paclitaxel (PAC)—resistant variants of the A2780 drug-sensitive ovarian cancer cell line—by miRNA microarray. The next goal was to identify miRNAs responsible for the regulation of drug-resistance genes. We observed changes in the expression of 46 miRNA that may be related to drug resistance. The overexpression of miR-125b-5p, miR-99a-5p, miR-296-3p, and miR-887-3p and downregulation of miR-218-5p, miR-221-3p, and miR-222-3p was observed in both CIS-resistant cell lines. In both PAC-resistant cell lines, we observed the upregulation of miR-221-3p, miR-222-3p, and miR-4485, and decreased expression of miR-551b-3p, miR-551b-5p, and miR-218-5p. Analysis of targets suggest that expression of important drug-resistant genes like protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Semaphorin 3A (SEMA3A), or the ATP-binding cassette subfamily B member 1 gene (ABCB1) can be regulated by miRNA.
Collapse
|
8
|
Li J, Tao T, Yu Y, Xu N, Du W, Zhao M, Jiang Z, Huang L. Expression profiling suggests the involvement of hormone-related, metabolic, and Wnt signaling pathways in pterygium progression. Front Endocrinol (Lausanne) 2022; 13:943275. [PMID: 36187094 PMCID: PMC9515788 DOI: 10.3389/fendo.2022.943275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pterygium is an ocular surface disease that can cause visual impairment if it progressively invades the cornea. Although many pieces of research showed ultraviolet radiation is a trigger of pterygium pathological progress, the underlying mechanism in pterygium remains indistinct. METHODS In this study, we used microarray to evaluate the changes of transcripts between primary pterygium and adjacent normal conjunctiva samples in China. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Moreover, we constructed protein-protein interaction (PPI) and miRNA-mRNA regulatory networks to predict possible regulatory relationships. We next performed gene set enrichment analysis (GSEA) to explore the similarities and differences of transcripts between Asian studies from the Gene Expression Omnibus database. Furthermore, we took the intersection of differentially expressed genes (DEGs) with other data and identified hub genes of the development of pterygium. Finally, we utilized real-time quantitative PCR to verify the expression levels of candidate genes. RESULTS A total of 49 DEGs were identified. The enrichment analyses of DEGs showed that pathways such as the Wnt-signaling pathway and metabolism-related pathways were upregulated, while pathways such as hormone-related and transcription factor-associated pathways were downregulated. The PPI and miRNA-mRNA regulatory networks provide ideas for future research directions. The GSEA of selecting Asian data revealed that epithelial-mesenchymal transition and myogenesis existed in the pathology of pterygium in the Asian group. Furthermore, five gene sets (interferon-gamma response, Wnt beta-catenin signaling, oxidative phosphorylation, DNA repair, and MYC targets v2) were found only in our Chinese datasets. After taking an intersection between selecting datasets, we identified two upregulated (SPP1 and MYH11) and five downregulated (ATF3, FOS, EGR1, FOSB, and NR4A2) hub genes. We finally chose night genes to verify their expression levels, including the other two genes (SFRP2 and SFRP4) involved in Wnt signaling; Their expression levels were significantly different between pterygium and conjunctiva. CONCLUSIONS We consider hormone-related, metabolic, and Wnt signaling pathways may be important in the pathology of pterygium development. Nine candidate genes we identified deserve further study and can be potential therapeutic targets.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Tianchang Tao
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wei Du
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Lvzhen Huang, ; Zhengxuan Jiang,
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- *Correspondence: Lvzhen Huang, ; Zhengxuan Jiang,
| |
Collapse
|
9
|
Hatsusaka N, Yamamoto N, Miyashita H, Shibuya E, Mita N, Yamazaki M, Shibata T, Ishida H, Ukai Y, Kubo E, Cheng HM, Sasaki H. Association among pterygium, cataracts, and cumulative ocular ultraviolet exposure: A cross-sectional study in Han people in China and Taiwan. PLoS One 2021; 16:e0253093. [PMID: 34129614 PMCID: PMC8205177 DOI: 10.1371/journal.pone.0253093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Pterygium is an ocular surface disorder mainly caused by ultraviolet (UV) light exposure. This study explored the relationships between six cataract types with pterygium and UV exposure. Methods We have previously studied cataracts in residents of three regions in China and Taiwan with different UV intensities. From that study, we identified 1,547 subjects with information on the presence or absence of pterygium. Pterygium severity was graded by corneal progress rate. Cataracts were graded by classification systems as three main types (cortical, nuclear, posterior subcapsular) and three subtypes (retrodots, waterclefts, fiber folds) with high prevalence in middle-aged and elderly people. We calculated the cumulative ocular UV exposure (COUV) based on subject data and National Aeronautics and Space Administration data on UV intensities and used logistic regression to calculate odds ratios for the associations of COUV, cataract, and pterygium. Results We found an overall pterygium prevalence of 23.3%, with significant variation among the three regions. Four cataract types (cortical, nuclear, posterior subcapsular, and retrodots) were significantly associated with the presence of pterygium. Conclusions There was a significant association between COUV and pterygium, indicating that COUV is associated with the risk of pterygium development and that pterygium is useful as an index of UV exposure. Furthermore, the type of cataract in eyes with pterygium may indicate the level of UV exposure.
Collapse
Affiliation(s)
- Natsuko Hatsusaka
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Vision Research for Environmental Health, Project Research Center, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Naoki Yamamoto
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Vision Research for Environmental Health, Project Research Center, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Hisanori Miyashita
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Eri Shibuya
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Norihiro Mita
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Mai Yamazaki
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Hidetoshi Ishida
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuki Ukai
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | | | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Vision Research for Environmental Health, Project Research Center, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- * E-mail:
| |
Collapse
|