1
|
The Response of Cd Chemical Fractions to Moisture Conditions and Incubation Time in Arable Land Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14106270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heavy metal pollution in soils is an issue of global concern, and many scholars have focused on Cadmium (Cd) because of its strong biological migration and toxicity. This study explored arable land soil, changes in external Cd contamination processes and its response to soil moisture conditions, and indoor simulation. After adding an external source of 5 mg/kg d.w., the distribution of soil Cd fractions content, EXC-Cd, CAB-Cd, FMO-Cd, OM-Cd, and RES-Cd, were continuously monitored under different water management regimes, and correlation analysis and regression equations were calculated. The results show that after external Cd entered arable land soils, the binging strength of pollutants and soil gradually increased with incubation time, and the distribution of Cd chemical forms was more stable under different water management regimes. The oversaturated water content promotes the transformation of EXC-Cd to other forms. The transformation of CAB-Cd fractions can be accelerated to other fractions by field capacity, and the active conversion period was 30–60 d. Not all Cd fractions correlated between each other, under the four water management regimes, but it seems that the reducibility of the soil environment was more conducive to external Cd fixation and stability. The response surface design method (RSM) was used to establish quantitative regimes between Cd fractions with incubation time and soil moisture, and the soil moisture content and incubation time had an obvious effect on FMO-Cd content, with R2 = 0.9542.
Collapse
|
2
|
Pb-Bearing Ferrihydrite Bioreduction and Secondary-Mineral Precipitation during Fe Redox Cycling. MINERALS 2022. [DOI: 10.3390/min12050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The significant accumulation of Pb from anthropogenic activities threatens environmental ecosystems. In the environment, iron oxides are one of the main carriers of Pb. Thus, the redox cycling of iron oxides, which is due to biotic and abiotic pathways, and which leads to their dissolution or transformation, controls the fate of Pb. However, a knowledge gap exists on the bioreduction in Pb-bearing ferrihydrites, secondary-mineral precipitation, and Pb partitioning during the bioreduction/oxidation/bioreduction cycle. In this study, Pb-bearing ferrihydrite (Fh_Pb) with various Pb/(Fe+Pb) molar ratios (i.e., 0, 2, and 5%) were incubated with the iron-reducing bacterium Shewanella oneidensis MR-1 for 7 days, oxidized for 7 days (atmospheric O2), and bioreduced a second time for 7 days. Pb doping led to a drop in the rate and the extent of the reduction. Lepidocrocite (23–56%) and goethite (44–77%) formed during the first reduction period. Magnetite (72–84%) formed during the second reduction. The extremely-low-dissolved and bioavailable Pb concentrations were measured during the redox cycles, which indicates that the Pb significantly sorbed onto the minerals that were formed. Overall, this study highlights the influence of Pb and redox cycling on the bioreduction of Pb-bearing iron oxides, as well as on the nature of the secondary minerals that are formed.
Collapse
|