1
|
Tang X, Zhang L, Wang L, Ren S, Zhang J, Ma Y, Xu F, Wu G, Zhang Y. Multi-Omics Analysis Reveals Dietary Fiber's Impact on Growth, Slaughter Performance, and Gut Microbiome in Durco × Bamei Crossbred Pig. Microorganisms 2024; 12:1674. [PMID: 39203515 PMCID: PMC11357262 DOI: 10.3390/microorganisms12081674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Dietary fiber (DF) is an important nutrient component in pig's diet that remarkably influences their growth and slaughter performance. The ability of pigs to digest DF depends on the microbial composition of the intestinal tract, particularly in the hindgut. However, studies on how DF alters the growth and slaughter performance of pigs by shaping the gut microbial composition and metabolites are still limited. Therefore, this study aimed to investigate the effects of DF on microbial composition, functions, and metabolites, ultimately altering host growth and slaughter performance using Durco × Bamei crossbred pigs supplemented with 0%, 10%, 17%, and 24% broad bean silage in the basic diet. We found that the final weight, average daily gain, fat, and lean meat weight significantly decreased with increasing DF. Pigs with the lowest slaughter rate and fat weight were observed in the 24% fiber-supplemented group. Gut microbial communities with the highest alpha diversity were formed in the 17% fiber group. The relative abundance of fiber-degrading bacteria, bile acid, and succinate-producing bacteria, including Prevotella sp., Bacteroides sp., Ruminococcus sp., and Parabacteroides sp., and functional pathways, including the butanoate metabolism and the tricarboxylic acid [TCA] cycle, significantly increased in the high-fiber groups. The concentrations of several bile acids significantly decreased in the fiber-supplemented groups, whereas the concentrations of succinate and long-chain fatty acids increased. Our results indicate that a high-fiber diet may alter the growth and slaughter performance of Durco × Bamei crossbred pigs by modulating the composition of Prevotella sp., Bacteroides sp., Ruminococcus sp., Parabacteroides sp., and metabolite pathways of bile acids and succinate.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Yuhong Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Fafang Xu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Guofang Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| |
Collapse
|
2
|
Li Z, Gao Q, Dong S, Dong K, Xu Y, Mei Y, Hou Z. Effects of Chronic Stress from High Stocking Density in Mariculture: Evaluations of Growth Performance and Lipid Metabolism of Rainbow Trout ( Oncorhychus mykiss). BIOLOGY 2024; 13:263. [PMID: 38666875 PMCID: PMC11048194 DOI: 10.3390/biology13040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
(1) Background: In aquaculture, chronic stress due to high stocking density impairs animals' welfare and results in declined fishery production with low protein quality. However, most previous studies evaluated the effects of high stocking density on trout in freshwater rather than seawater. (2) Methods: Juvenile trout were reared for 84 days in circular tanks under three stocking densities, including low density ("LD", 9.15 kg/m3), moderate density ("MD", 13.65 kg/m3), and high density ("HD", 27.31 kg/m3) in seawater. The final densities of LD, MD, and HD were 22.00, 32.05 and 52.24 kg/m3, respectively. Growth performance and lipid metabolism were evaluated. (3) Results: Growth performance and feeding efficiency were significantly reduced due to chronic stress under high density in mariculture. The digestive activity of lipids was promoted in the gut of HD fish, while the concentration of triglycerides was decreased in the blood. Furthermore, decreased acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), increased hormone-sensitive lipase (HSL) concentrations, and activated hepatic β-oxidation processes were observed in trout under HD. Redundancy analysis showed that glycerol and HSL can be used as potential markers to evaluate the growth performance of trout in mariculture. (4) Conclusions: We showed that chronic high stocking density led to negative effects on growth performance, reduced de novo synthesis of fatty acids, and enhanced lipolysis.
Collapse
Affiliation(s)
- Zhao Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; (Z.L.)
| | - Qinfeng Gao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; (Z.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Shuanglin Dong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; (Z.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Kang Dong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; (Z.L.)
| | - Yuling Xu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; (Z.L.)
| | - Yaoping Mei
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; (Z.L.)
| | - Zhishuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; (Z.L.)
| |
Collapse
|
3
|
Liu Y, Azad MAK, Zhao X, Kong X. Crude protein content in diets associated with intestinal microbiome and metabolome alteration in Huanjiang mini-pigs during different growth stages. Front Microbiol 2024; 15:1398919. [PMID: 38690359 PMCID: PMC11058986 DOI: 10.3389/fmicb.2024.1398919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Adequate crude protein (CP) content in diets plays a crucial role in the intestinal health of the animal. This study investigated the impacts of CP content in diets on the intestinal microbiome and metabolome profiles in growing Huanjiang mini-pigs. Methods A total of 360 pigs with similar body weight (BW) were allocated for three independent feeding trials based on three different BW stages, including (i) 5-10 kg BW, diets consisting of 14, 16, 18, 20, and 22% CP content; (ii) 10-20 kg BW, diets consisting of 12, 14, 16, 18, and 20% CP content; and (iii) 20-30 kg BW, diets consisting of 10, 12, 14, 16, and 18% CP content. These experiments lasted 28, 28, and 26 days, respectively. Results The results showed that the Shannon and Simpson indices were decreased (p < 0.05) in the ileum of pigs in response to the 14-18% CP compared with the 20% CP content at 5-10 kg BW stage, while diets containing 12 and 14% CP had higher Chao1 (p < 0.05) and Shannon (p = 0.054) indices compared with 18% CP at 20-30 kg BW stage. Compared with the 20% CP, the diet containing 16% CP displayed an increasing trend (p = 0.089) of Firmicutes abundance but had decreased (p = 0.056) Actinobacteria abundance in the jejunum at 5-10 kg BW stage. In addition, a diet containing 16% CP had higher Lactobacillus abundance in the jejunum and ileum compared with the 18, 20, and 22% CP, while had lower Sphingomonas and Pelomonas abundances in the jejunum and Streptococcus abundance in the ileum compared with the diet containing 22% CP (p < 0.05). Diets containing lower CP content altered differential metabolites in the small intestine at the early stage, while higher CP content had less impact. Conclusion These findings suggest that a diet containing lower CP content (16% CP) may be an appropriate dietary CP content for 5-10 kg Huanjiang mini-pigs, as 16% CP content in diet has shown beneficial impacts on the intestinal microbiome and metabolome profiles at the early growth stage of pigs.
Collapse
Affiliation(s)
- Yating Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xichen Zhao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, China
| |
Collapse
|
4
|
Gao L, Liu L, Du C, Hou Q. Comparative Analysis of Fecal Bacterial Microbiota of Six Bird Species. Front Vet Sci 2021; 8:791287. [PMID: 34957285 PMCID: PMC8692710 DOI: 10.3389/fvets.2021.791287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota contributes to host health by maintaining homeostasis and improving digestive efficiency. Therefore, identifying gut microbes will shed light on the annual life cycle of animals and in particular those that are threatened or endangered. Nonetheless, the gut microbial composition of the majority of bird species is still unknown. Here, for the first time, 16S rRNA gene sequencing was used to characterize and compare the community composition and diversity of gut microbiotas from six species of birds raised at the Wildlife Conservation Center in Baotou, China: relict gull (Larus relictus; n = 3), muscovy duck (Cairina moschata; n = 3), ruddy shelduck (Tadorna ferruginea; n = 3), demoiselle crane (Anthropoides virgo; n = 4), whooper swan (Cygnus cygnus; n = 3), and black swan (Cygnus atratus; n = 5). A total of 26,616 operational taxonomic units from 21 samples were classified into 32 phyla and 507 genera. Chao1, Shannon diversity, observed species, and Simpson index analysis revealed differences in the community richness and diversity between the different species. Proteobacteria was the dominant bacterial phylum in whooper swan and relict gull, whereas Firmicutes was the dominant bacterial phylum in the other species. At the genus level, 11 dominant genera were detected (Lactobacillus, Psychrobacter, Enterococcus, Carnobacterium, Weissella, Burkholderia, Escherichia/Shigella, Leuconostoc, Buttiauxella, Desemzia, and Staphylococcus). Principal component and cluster analyses revealed that, while the microbial community composition of different individuals of the same species clustered together, the gut microbial composition varied between the bird species. Furthermore, the most abundant bacterial species differed between bird species. Because many avian gut microbes are derived from the diet, the eating habits and natural living environment of birds may be important contributing factors to the observed differences. Short-term changes to the diet and living environment have little effect on the composition of the avian gut microbiota. This study provides a theoretical basis for bird protection, including disease prevention and control.
Collapse
Affiliation(s)
- Li Gao
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Li Liu
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Chao Du
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
5
|
Tao X, Deng B, Yuan Q, Men X, Wu J, Xu Z. Low Crude Protein Diet Affects the Intestinal Microbiome and Metabolome Differently in Barrows and Gilts. Front Microbiol 2021; 12:717727. [PMID: 34489906 PMCID: PMC8417834 DOI: 10.3389/fmicb.2021.717727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
Low protein diets are commonly used in the growing-finishing pig stage of swine production; however, the effects of low dietary protein on the intestinal microbiota and their metabolites, and their association with pig sex, remain unclear. The present study aimed to assess the impact of a low crude protein (CP) diet on the gut microbiome and metabolome, and to reveal any relationship with sex. Barrows and gilts (both n = 24; initial body = 68.33 ± 0.881 kg) were allocated into two treatments according to sex. The four groups comprised two pairs of gilts and barrows fed with a high protein diet (CP 17% at stage I; CP 13% at stage II) and a low protein diet (CP 15% at stage I; CP 11% at stage II), respectively, for 51 d. Eight pigs in each group were slaughtered and their colon contents were collected. Intestinal microbiota and their metabolites were assessed using 16S rRNA sequencing and tandem mass spectrometry, respectively. The low protein diet increased intestinal microbiota species and richness indices (P < 0.05) in both sexes compared with the high protein diet. The sample Shannon index was different (P < 0.01) between barrows and gilts. At the genus level, unidentified Clostridiales (P < 0.05), Neisseria (P < 0.05), unidentified Prevotellaceae (P < 0.01) and Gracilibacteria (P < 0.05) were affected by dietary protein levels. The relative abundance of unidentified Prevotellaceae was different (P < 0.01) between barrows and gilts. The influence of dietary protein levels on Neisseria (P < 0.05), unidentified Prevotellaceae (P < 0.01) and Gracilibacteria (P < 0.05) were associated with sex. Metabolomic profiling indicated that dietary protein levels mainly affected intestinal metabolites in gilts rather than barrows. A total of 434 differentially abundant metabolites were identified in gilts fed the two protein diets. Correlation analysis identified that six differentially abundant microbiota communities were closely associated with twelve metabolites that were enriched for amino acids, inflammation, immune, and disease-related metabolic pathways. These results suggested that decreasing dietary protein contents changed the intestinal microbiota in growing-finishing pigs, which selectively affected the intestinal metabolite profiles in gilts.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|