1
|
Wang W, Todorov P, Pei C, Wang M, Isachenko E, Rahimi G, Mallmann P, Isachenko V. Epigenetic Alterations in Cryopreserved Human Spermatozoa: Suspected Potential Functional Defects. Cells 2022; 11:cells11132110. [PMID: 35805194 PMCID: PMC9266127 DOI: 10.3390/cells11132110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Gene set enrichment analysis (GSEA) was conducted on raw data, and alternative splicing (AS) events were found after mRNA sequencing of human spermatozoa. In this study, we aimed to compare unknown micro-epigenetics alternations in fresh and cryopreserved spermatozoa to evaluate the effectivity of cryopreservation protocols. Methods: Spermatozoa were divided into three groups: fresh spermatozoa (group 1), cryoprotectant-free vitrified spermatozoa (group 2), and conventionally frozen spermatozoa (group 3). Nine RNA samples (three replicates in each group) were detected and were used for library preparation with an Illumina compatible kit and sequencing by the Illumina platform. Results: Three Gene Ontology (GO) terms were found to be enriched in vitrified spermatozoa compared with fresh spermatozoa: mitochondrial tRNA aminoacylation, ATP-dependent microtubule motor activity, and male meiotic nuclear division. In alternative splicing analysis, a number of unknown AS events were found, including functional gene exon skipping (SE), alternative 5′ splice sites (A5SS), alternative 3′ splice sites (A3SS), mutually exclusive exon (MXE), and retained intron (RI). Conclusions: Cryopreservation of spermatozoa from some patients can agitate epigenetic instability, including increased alternative splicing events and changes in crucial mitochondrial functional activities. For fertilization of oocytes, for such patients, it is recommended to use fresh spermatozoa whenever possible; cryopreservation of sperm is recommended to be used only in uncontested situations.
Collapse
Affiliation(s)
- Wanxue Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences, Tsarigradsko highway 73A, 1113 Sofia, Bulgaria;
| | - Cheng Pei
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Mengying Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Evgenia Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Gohar Rahimi
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Peter Mallmann
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Vladimir Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
- Correspondence:
| |
Collapse
|
2
|
López A, Betancourt M, Ducolomb Y, Rodríguez JJ, Casas E, Bonilla E, Bahena I, Retana-Márquez S, Juárez-Rojas L, Casillas F. DNA damage in cumulus cells generated after the vitrification of in vitro matured porcine oocytes and its impact on fertilization and embryo development. Porcine Health Manag 2021; 7:56. [PMID: 34663451 PMCID: PMC8522150 DOI: 10.1186/s40813-021-00235-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Background The evaluation of the DNA damage generated in cumulus cells after mature cumulus-oocyte complexes vitrification can be considered as an indicator of oocyte quality since these cells play important roles in oocyte developmental competence. Therefore, the aim of this study was to determine if matured cumulus-oocyte complexes exposure to cryoprotectants (CPAs) or vitrification affects oocytes and cumulus cells viability, but also if DNA damage is generated in cumulus cells, affecting fertilization and embryo development. Results The DNA damage in cumulus cells was measured using the alkaline comet assay and expressed as Comet Tail Length (CTL) and Olive Tail Moment (OTM). Results demonstrate that oocyte exposure to CPAs or vitrification reduced oocyte (75.5 ± 3.69%, Toxicity; 66.7 ± 4.57%, Vitrification) and cumulus cells viability (32.7 ± 5.85%, Toxicity; 7.7 ± 2.21%, Vitrification) compared to control (95.5 ± 4.04%, oocytes; 89 ± 4.24%, cumulus cells). Also, significantly higher DNA damage expressed as OTM was generated in the cumulus cells after exposure to CPAs and vitrification (39 ± 17.41, 33.6 ± 16.69, respectively) compared to control (7.4 ± 4.22). In addition, fertilization and embryo development rates also decreased after exposure to CPAs (35.3 ± 16.65%, 22.6 ± 3.05%, respectively) and vitrification (32.3 ± 9.29%, 20 ± 1%, respectively). It was also found that fertilization and embryo development rates in granulose-intact oocytes were significantly higher compared to denuded oocytes in the control groups. However, a decline in embryo development to the blastocyst stage was observed after CPAs exposure (1.66 ± 0.57%) or vitrification (2 ± 1%) compared to control (22.3 ± 2.51%). This could be attributed to the reduction in both cell types viability, and the generation of DNA damage in the cumulus cells. Conclusion This study demonstrates that oocyte exposure to CPAs or vitrification reduced viability in oocytes and cumulus cells, and generated DNA damage in the cumulus cells, affecting fertilization and embryo development rates. These findings will allow to understand some of the mechanisms of oocyte damage after vitrification that compromise their developmental capacity, as well as the search for new vitrification strategies to increase fertilization and embryo development rates by preserving the integrity of the cumulus cells.
Collapse
Affiliation(s)
- Alma López
- Biological and Health Sciences Program, Metropolitan Autonomous University, Mexico City, Mexico.,Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Yvonne Ducolomb
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Juan José Rodríguez
- Genetic and Environmental Toxicology Research Unit, FES-Zaragoza-UMIEZ Campus II, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Eduardo Casas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Edmundo Bonilla
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Iván Bahena
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Av. San Rafael Atlixco 186, Leyes de Reforma, 09340, Mexico City, Mexico
| | - Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Av. San Rafael Atlixco 186, Leyes de Reforma, 09340, Mexico City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Av. San Rafael Atlixco 186, Leyes de Reforma, 09340, Mexico City, Mexico.
| |
Collapse
|
3
|
Diaz-Jimenez M, Wang M, Wang W, Isachenko E, Rahimi G, Kumar P, Mallmann P, von Brandenstein M, Hidalgo M, Isachenko V. Cryo-banking of human spermatozoa by aseptic cryoprotectants-free vitrification in liquid air: Positive effect of elevated warming temperature. Cell Tissue Bank 2021; 23:17-29. [PMID: 33608835 DOI: 10.1007/s10561-021-09904-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
Cryoprotectant-free vitrification is a common method for spermatozoa cryopreservation by direct plunging into liquid nitrogen. However, the commercial liquid nitrogen could be potentially contaminated by microorganisms. Warming temperature plays an essential role for quality of human spermatozoa after vitrification. This study aimed to evaluate comparatively a quality spermatozoa after vitrification in liquid nitrogen and clean liquid air as well as with two warming rates: at 42 °C and 45 °C. After performing of routine swim-up of normozoospermia samples, spermatozoa from the same ejaculate were divided into two groups: vitrified in liquid nitrogen (LN) and sterile liquid air (LA). Spermatozoa of LN group were warmed at 42 °C, and spermatozoa of LA groups were divided and warmed at 42 °C (LA42) and 45 °C (LA45). Then spermatozoa motility, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), reactive nitrogen species (RNS), and viability were assessed. It was no found significant differences in quality of spermatozoa from LN and LA groups in the motility, ROS, MMP, RNS rates after warming at 42 °C. A tendency to obtain better spermatozoa quality was found with using of warming by 42 °C in comparison with 45 °C. It was concluded that cryoprotectant-free vitrification by direct dropping of human spermatozoa into clean liquid air can be used as an alternative to cooling in liquid nitrogen. Warming of spermatozoa at 42 °C allows to preserve the spermatozoa physiological parameters.
Collapse
Affiliation(s)
- Maria Diaz-Jimenez
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931, Cologne, Germany.,Veterinary Reproduction Group, Department of Animal Medicine Surgery, University of Cordoba, 14071, Cordoba, Spain
| | - Mengying Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931, Cologne, Germany
| | - Wanxue Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931, Cologne, Germany
| | - Evgenia Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931, Cologne, Germany
| | - Gohar Rahimi
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931, Cologne, Germany
| | - Pradeep Kumar
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931, Cologne, Germany
| | - Peter Mallmann
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931, Cologne, Germany
| | - Melanie von Brandenstein
- University Clinic for Urology and Urological Oncology, Medical Faculty, Cologne University, 50931, Cologne, Germany
| | - Manuel Hidalgo
- Veterinary Reproduction Group, Department of Animal Medicine Surgery, University of Cordoba, 14071, Cordoba, Spain
| | - Vladimir Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931, Cologne, Germany.
| |
Collapse
|