1
|
Ma YY, Zhou WY, Qian Y, Mu YY, Zhang W. SOX13 as a potential prognostic biomarker linked to immune infiltration and ferroptosis inhibits the proliferation, migration, and metastasis of thyroid cancer cells. Front Immunol 2024; 15:1478395. [PMID: 39726600 PMCID: PMC11670200 DOI: 10.3389/fimmu.2024.1478395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background SOX13 is a transcription factor belonging to the SOX family. SOX proteins are critical regulators of multiple cancer progression, and some are known to control carcinogenesis. Nevertheless, the functional and clinical significance of SOX13 in human thyroid cancer (THCA) remain largely unelucidated. Methods Data on SOX13 expression were obtained through The Cancer Genome Atlas together with Gene Expression Omnibus. Co-expression, differential expression, and functional analyses of genes were investigated by databases. Associations between SOX13 levels, immune infiltration, ferroptosis, and immune checkpoint gene levels were analyzed. Genetic changes in SOX13 were investigated using CBioPortal. Associations between SOX13 levels and THCA clinicopathological features were analyzed and nomogram modeling for diagnostic and prognostic prediction. The influence of SOX13 on proliferation, migration, and metastasis was determined in KTC-1 and TPC-1 cell lines. Results SOX13 was significantly lower in THCA tumors compared to controls. In addition, upregulated SOX13 gene mutation were evident in thyroid cancer. SOX13-associated genes exhibited differential expression in pathways associated with thyroid cancer development. Significant associations were found between SOX13 levels, immune infiltration, ferroptosis, and immune checkpoint genes in THCA tissue. SOX13 levels correlated with THCA stage, histologic grade, and primary neoplasm focus types, and independently predicted overall and progression-free intervals. SOX13 expression effectively distinguished between tumor and normal thyroid tissue. Spearman correlations highlighted a significant relationship between SOX13 and ferroptosis-associated genes. Overexpression of SOX13 enhances the inhibition of RSL3 (iron death activator) on the cell viability of TPC-1. Higher SOX13 levels in Thyroid cancer cells may lead to reduced proliferation, migration, and metastasis by regulating ferroptosis. Conclusion Reduced SOX13 expression inversely impacts patient prognosis. In addition, SOX13 strongly regulates cancer immunity and Ferroptosis. Hence, SOX13 has great promise as a bioindicator for both thyroid cancer prognosis and immune cell invasion.
Collapse
Affiliation(s)
- Yan-yan Ma
- Department of Rehabilitation Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou, China
| | - Wei-ye Zhou
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue Qian
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, Guizhou, China
| | - Ying-ying Mu
- Department of Pathology, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou, China
| | - Wei Zhang
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Demos C, Johnson J, Andueza A, Park C, Kim Y, Villa-Roel N, Kang DW, Kumar S, Jo H. Sox13 is a novel flow-sensitive transcription factor that prevents inflammation by repressing chemokine expression in endothelial cells. Front Cardiovasc Med 2022; 9:979745. [PMID: 36247423 PMCID: PMC9561411 DOI: 10.3389/fcvm.2022.979745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and occurs preferentially in arterial regions exposed to disturbed blood flow (d-flow) while the stable flow (s-flow) regions are spared. D-flow induces endothelial inflammation and atherosclerosis by regulating endothelial gene expression partly through the flow-sensitive transcription factors (FSTFs). Most FSTFs, including the well-known Kruppel-like factors KLF2 and KLF4, have been identified from in vitro studies using cultured endothelial cells (ECs). Since many flow-sensitive genes and pathways are lost or dysregulated in ECs during culture, we hypothesized that many important FSTFs in ECs in vivo have not been identified. We tested the hypothesis by analyzing our recent gene array and single-cell RNA sequencing (scRNAseq) and chromatin accessibility sequencing (scATACseq) datasets generated using the mouse partial carotid ligation model. From the analyses, we identified 30 FSTFs, including the expected KLF2/4 and novel FSTFs. They were further validated in mouse arteries in vivo and cultured human aortic ECs (HAECs). These results revealed 8 FSTFs, SOX4, SOX13, SIX2, ZBTB46, CEBPβ, NFIL3, KLF2, and KLF4, that are conserved in mice and humans in vivo and in vitro. We selected SOX13 for further studies because of its robust flow-sensitive regulation, preferential expression in ECs, and unknown flow-dependent function. We found that siRNA-mediated knockdown of SOX13 increased endothelial inflammatory responses even under the unidirectional laminar shear stress (ULS, mimicking s-flow) condition. To understand the underlying mechanisms, we conducted an RNAseq study in HAECs treated with SOX13 siRNA under shear conditions (ULS vs. oscillatory shear mimicking d-flow). We found 94 downregulated and 40 upregulated genes that changed in a shear- and SOX13-dependent manner. Several cytokines, including CXCL10 and CCL5, were the most strongly upregulated genes in HAECs treated with SOX13 siRNA. The robust induction of CXCL10 and CCL5 was further validated by qPCR and ELISA in HAECs. Moreover, the treatment of HAECs with Met-CCL5, a specific CCL5 receptor antagonist, prevented the endothelial inflammation responses induced by siSOX13. In addition, SOX13 overexpression prevented the endothelial inflammation responses. In summary, SOX13 is a novel conserved FSTF, which represses the expression of pro-inflammatory chemokines in ECs under s-flow. Reduction of endothelial SOX13 triggers chemokine expression and inflammatory responses, a major proatherogenic pathway.
Collapse
Affiliation(s)
- Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Janie Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Aitor Andueza
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Gökçen Demiray A, Demiray A, Yaren A, Yapar Taşköylü B, Gököz Doğu G, Değirmencioğlu S, Çakıroğlu U, Özhan N, Karan C, Çakan Demirel B, Doğan T, Özdemir M. Evaluation of Serum microRNA Let-7c and Let-7d as Predictive Biomarkers for Metastatic Pancreatic Cancer. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2022; 33:696-703. [PMID: 35943151 PMCID: PMC9524463 DOI: 10.5152/tjg.2022.21829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND First-line treatments for metastatic pancreatic cancer are chemotherapy regimens consisting of 5-fluorouracil or gemcitabine; however, there are no biomarkers to help determine which patients might benefit from which treatment regimens. We aimed to show that microRNAs let-7c and 7d can be used as independent predictive biomarkers for metastatic pancreatic cancer. METHODS A total of 55 patients who had first-line chemotherapy with FOLFIRINOX or gemcitabine+capecitabine were included. Patients were divided into groups based on let-7c and let-7d levels and chemotherapy treatment as let-7c-7d high FOLFIRINOX, let7c-7d high gemcitabine+capecitabine, let-7c-7d low FOLFIRINOX, and let-7c-7d low gemcitabine+capecitabine. Blood samples were taken from patients before chemotherapy for microRNA let-7c and 7d analysis. MicroRNA isolation was performed using a miRNeasy Serum/Plasma Kit and identified using spectrophotometric measurements. After isolation, microRNA was converted to cDNA using a microRNA cDNA Synthesis Kit with poly (A) polymerase tailing. The expression of microRNA was examined using quantitative real-time polymerase chain reaction. RESULTS The overall survival of patients who received FOLFIRINOX treatment with a high let-7c-7d level was statistically significantly longer than those who received gemcitabine+capecitabine with a high let-7c-7d level. In addition, patients with low let-7c expression receiving FOLFIRINOX progressed significantly 2.104 times earlier than patients with high let-7c expression receiving FOLFIRINOX. CONCLUSION The serum MicroRNA let-7c level was found to be an independent predictive biomarker in the FOLFIRINOX treatment group.
Collapse
Affiliation(s)
- Atike Gökçen Demiray
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Aydın Demiray
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Arzu Yaren
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Burcu Yapar Taşköylü
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Gamze Gököz Doğu
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Serkan Değirmencioğlu
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Umut Çakıroğlu
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Nail Özhan
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Canan Karan
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Burçin Çakan Demirel
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Tolga Doğan
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Melek Özdemir
- Department of Medical Oncology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| |
Collapse
|
4
|
Jin X, Shao X, Pang W, Wang Z, Huang J. Sex-determining Region Y-box transcription factor 13 promotes breast cancer cell proliferation and glycolysis by activating the tripartite motif containing 11-mediated Wnt/β-catenin signaling pathway. Bioengineered 2022; 13:13033-13044. [PMID: 35611828 PMCID: PMC9276007 DOI: 10.1080/21655979.2022.2073127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most frequent cancer among women and the second highest mortality in female across the world. Recent studies have illustrated that sex-determining region Y (SRY)-box protein (SOX) family plays essential roles in regulating various cancers. Nevertheless, the detailed effects of SOX13 on breast cancer are still uncovered. In our present study, SOX13 protein level was measured by using western blot assay in tissues and cells, and the results showed that SOX13 was upregulated in breast cancer tissues and cells compared with normal samples. Moreover, silencing SOX13 inhibited breast cancer cell viability, arrested cell cycle at G1/S phase and suppressed glycolysis, while overexpression of SOX13 reversed these events. Additionally, SOX13 knockdown reduced the level of proteins related to Wnt/β-catenin signaling pathway, whereas overexpression of tripartite motif containing 11 (TRM11) efficiently attenuated the effects, indicating that SOX13 controlled Wnt/β-catenin pathway depending on TRIM11. Furthermore, the data gained from xenograft tumor model illustrated that silencing SOX13 suppressed the tumor growth in nude mice and the glycolysis of tissues. In conclusion, our investigation illustrated that SOX13 facilitated breast cancer cell proliferation and glycolysis by modulating Wnt/β-catenin signaling pathway affected via TRIM11.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Department of Breast Surgery, Taizhou Municipal Hospital, Taizhou, Zhejiang Province, China
| | - Xuan Shao
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wenyang Pang
- Department of Breast Surgery, Taizhou Municipal Hospital, Taizhou, Zhejiang Province, China
| | - Zhengyi Wang
- Department of Breast Surgery, Taizhou Municipal Hospital, Taizhou, Zhejiang Province, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Sun Y, Wang P, Zhang Q, Wu H. CDK14/β-catenin/TCF4/miR-26b positive feedback regulation modulating pancreatic cancer cell phenotypes in vitro and tumor growth in mice model in vivo. J Gene Med 2022; 24:e3343. [PMID: 33871149 DOI: 10.1002/jgm.3343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Chemotherapy and radiotherapy have been reported to be basically ineffective for pancreatic ductal adenocarcinoma patients; thus, gene therapy might provide a novel approach. CDK14, a new oncogenic member of the CDK family involved in the pancreatic cancer cell response to gemcitabine treatment, has been reported to be regulated by microRNAs. In the present study, we aimed to investigate whether miR-26b regulated CDK14 expression to affect the phenotype of pancreatic cancer cells. METHODS Overexpression or knockdown of CDK14 or miR-26b was generated in pancreatic cancer cell lines and the function of CDK14 and miR-26b on cell phenotype and the Wnt signaling pathway was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine and transwell assays, as well as a xenograft model and western blotting. The predicted binding site between the 3'-untranslated region of CDK14 and miR-26b, miR-26b promoter and TCF4 was verified by luciferase or chromatin immunoprecipitation assays. RESULTS CDK14 overexpression inhibited p-GSK3β, whereas it promoted p-LRP6, the nuclear translocation of β-catenin and the transactivation of TCF4 transcription factor, thus promoting pancreatic cancer cell aggressiveness. miR-26b directly targeted CDK14 and inhibited CDK14 expression. In vitro and in vivo, miR-26b overexpression inhibited, and CDK14 overexpression promoted, cancer cell aggressiveness; CDK14 overexpression partially attenuated the miR-26b overexpression effects on cancer cells. The effects of miR-26b overexpression on tumor growth and the Wnt/β-catenin/TCF4 signaling were partially reversed by CDK14 overexpression. TCF4 inhibited the expression of miR-26b by targeting its promoter region. CONCLUSIONS CDK14, β-catenin, TCF4 and miR-26b form a positive feedback regulation for modulating pancreatic cancer cell phenotypes in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Yunpeng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pengfei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huanhuan Wu
- Department of Post-anesthetic ICU, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Yao J, Yang M, Atteh L, Liu P, Mao Y, Meng W, Li X. A pancreas tumor derived organoid study: from drug screen to precision medicine. Cancer Cell Int 2021; 21:398. [PMID: 34315500 PMCID: PMC8314636 DOI: 10.1186/s12935-021-02044-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) one of the deadliest malignant tumor. Despite considerable progress in pancreatic cancer treatment in the past 10 years, PDAC mortality has shown no appreciable change, and systemic therapies for PDAC generally lack efficacy. Thus, developing biomarkers for treatment guidance is urgently required. This review focuses on pancreatic tumor organoids (PTOs), which can mimic the characteristics of the original tumor in vitro. As a powerful tool with several applications, PTOs represent a new strategy for targeted therapy in pancreatic cancer and contribute to the advancement of the field of personalized medicine.
Collapse
Affiliation(s)
- Jia Yao
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Man Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Lawrence Atteh
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|