1
|
Bigham A, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L. Oxygen-Deficient Bioceramics: Combination of Diagnosis, Therapy, and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302858. [PMID: 37259776 DOI: 10.1002/adma.202302858] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The journey of ceramics in medicine has been synchronized with an evolution from the first generation-alumina, zirconia, etc.-to the third -3D scaffolds. There is an up-and-coming member called oxygen-deficient or colored bioceramics, which have recently found their way through biomedical applications. The oxygen vacancy steers the light absorption toward visible and near infrared regions, making the colored bioceramics multifunctional-therapeutic, diagnostic, and regenerative. Oxygen-deficient bioceramics are capable of turning light into heat and reactive oxygen species for photothermal and photodynamic therapies, respectively, and concomitantly yield infrared and photoacoustic images. Different types of oxygen-deficient bioceramics have been recently developed through various synthesis routes. Some of them like TiO2- x , MoO3- x , and WOx have been more investigated for biomedical applications, whereas the rest have yet to be scrutinized. The most prominent advantage of these bioceramics over the other biomaterials is their multifunctionality endowed with a change in the microstructure. There are some challenges ahead of this category discussed at the end of the present review. By shedding light on this recently born bioceramics subcategory, it is believed that the field will undergo a big step further as these platforms are naturally multifunctional.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Aldo R Boccaccini
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| |
Collapse
|
2
|
Handayani NA, Mulia K, Kartohardjono S, Krisanti EA. Fortifying jelly foods with microencapsulated anti-anaemic compounds, ferrous gluconate, ascorbic acid and folic acid. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:147-159. [PMID: 36618066 PMCID: PMC9813336 DOI: 10.1007/s13197-022-05599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
Low ferrous iron bioavailability presents a challenge for food fortification programmes. In this study, jelly foods were fortified with spray-dried chitosan microparticles that had been loaded with ferrous gluconate (FeG) and folic acid (FA) to alleviate iron deficiency anaemia and FA deficiency anaemia, respectively. The presence of FA and ascorbic acid (AA) increased the in vitro iron bioavailability of the FeG-AA-FA microparticles up to sixfold. Furthermore, the iron bioavailability of the fortified jelly foods increased more than 5 folds compared to that of the FeG-AA-FA microparticles. The use of lower temperature during the preparation of fortified jelly foods is recommended to avoid the microparticles' decomposition and a Maillard browning reaction. These findings can help food technologists and product developers select formulations with higher ferrous bioavailability to reduce the prevalence of anaemia. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05599-7.
Collapse
Affiliation(s)
- Noer Abyor Handayani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro Kampus Undip Tembalang, Semarang, Central Java Indonesia
| | - Kamarza Mulia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| | - Sutrasno Kartohardjono
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| | - Elsa Anisa Krisanti
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| |
Collapse
|
4
|
Hu X, Xie L, Xu Z, Liu S, Tan X, Qian R, Zhang R, Jiang M, Xie W, Tian W. Photothermal-Enhanced Fenton-like Catalytic Activity of Oxygen-Deficient Nanotitania for Efficient and Safe Tooth Whitening. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35315-35327. [PMID: 34291910 DOI: 10.1021/acsami.1c06774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The growing demand for charming smiles has led to the popularization of tooth bleaching procedures. Current tooth bleaching products with high-concentration hydrogen peroxide (HP, 30-40%) are effective but detrimental due to the increased risk of enamel destruction, tooth sensitivity, and gingival irritation. Herein, we reported a less-destructive and efficient tooth whitening strategy with a low-concentration HP, which was realized by the remarkably enhanced Fenton-like catalytic activity of oxygen-deficient TiO2 (TiO2-x). TiO2-x nanoparticles were synthesized with a modified solid-state chemical reduction approach with NaBH4. The Fenton-like activity of TiO2-x was optimized by manipulating oxygen vacancy (OV) concentration and further promoted by the near-infrared (NIR)-induced photothermal effect of TiO2-x. The TiO2-x sample named BT45 was chosen due to the highest methylene blue (MB) adsorption ability and Fenton-like activity among acquired samples. The photothermal property of BT45 under 808 nm NIR irradiation was verified and its enhancement on Fenton-like activity was also studied. The BT45/HP + NIR group performed significantly better in tooth whitening than the HP + NIR group on various discolored teeth (stained by Orange II, tea, or rhodamine B). Excitingly, the same tooth whitening performance as the Opalescence Boost, a tooth bleaching product containing 40% HP, was obtained by a self-produced bleaching gel based on this novel system containing 12% HP. Besides, negligible enamel destruction, safe temperature range, and good cytocompatibility of TiO2-x nanoparticles also demonstrated the safety of this tooth bleaching strategy. This work indicated that the photothermal-enhanced Fenton-like performance of the TiO2-x-based system is highly promising in tooth bleaching application and can also be extended to other biomedical applications.
Collapse
Affiliation(s)
- Xingyu Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhaoyu Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Suru Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruojing Qian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruitao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingyan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenjia Xie
- Department of Prosthodontics I, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|