1
|
Okuzono Y, Miyakawa S, Itou T, Sagara M, Iwata M, Ishizuchi K, Sekiguchi K, Motegi H, Oyama M, Warude D, Kikukawa Y, Suzuki S. B-cell immune dysregulation with low soluble CD22 levels in refractory seronegative myasthenia gravis. Front Immunol 2024; 15:1382320. [PMID: 38711503 PMCID: PMC11071663 DOI: 10.3389/fimmu.2024.1382320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Myasthenia gravis (MG), primarily caused by acetylcholine receptor (AChR) autoantibodies, is a chronic autoimmune disorder causing severe muscle weakness and fatigability. In particular, seronegative MG constitutes 10%-15% of MG cases and presents diagnostic challenges especially in early-onset female patients who often show severe disease and resistance to immunosuppressive therapy. Furthermore, the immunopathology of seronegative MG remains unclear. Thus, in this study, we aimed to elucidate the pathogenic mechanism of seronegative MG using scRNA-seq analysis and plasma proteome analysis; in particular, we investigated the relationship between immune dysregulation status and disease severity in refractory seronegative MG. Employing single-cell RNA-sequencing and plasma proteome analyses, we analyzed peripheral blood samples from 30 women divided into three groups: 10 healthy controls, 10 early-onset AChR-positive MG, and 10 refractory early-onset seronegative MG patients, both before and after intravenous immunoglobulin treatment. The disease severity was evaluated using the MG-Activities of Daily Living (ADL), MG composite (MGC), and revised 15-item MG-Quality of Life (QOL) scales. We observed numerical abnormalities in multiple immune cells, particularly B cells, in patients with refractory seronegative MG, correlating with disease activity. Notably, severe MG cases had fewer regulatory T cells without functional abnormalities. Memory B cells were found to be enriched in peripheral blood cells compared with naïve B cells. Moreover, plasma proteome analysis indicated significantly lower plasma protein levels of soluble CD22, expressed in the lineage of B-cell maturation (including mature B cells and memory B cells), in refractory seronegative MG patients than in healthy donors or patients with AChR-positive MG. Soluble CD22 levels were correlated with disease severity, B-cell frequency, and RNA expression levels of CD22. In summary, this study elucidates the immunopathology of refractory seronegative MG, highlighting immune disorders centered on B cells and diminished soluble CD22 levels. These insights pave the way for novel MG treatment strategies focused on B-cell biology.
Collapse
Affiliation(s)
- Yuumi Okuzono
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shuuichi Miyakawa
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Tatsuo Itou
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masaki Sagara
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masashi Iwata
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kei Ishizuchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Koji Sekiguchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Motegi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Munenori Oyama
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Dnyaneshwar Warude
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yusuke Kikukawa
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
He L, Zhong Z, Wen S, Li P, Jiang Q, Liu F. Gut microbiota-derived butyrate restores impaired regulatory T cells in patients with AChR myasthenia gravis via mTOR-mediated autophagy. Cell Commun Signal 2024; 22:215. [PMID: 38570836 PMCID: PMC10988943 DOI: 10.1186/s12964-024-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.
Collapse
Affiliation(s)
- Long He
- Department of Digestive Endoscopy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Postdoctoral Research Station of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China
| | - Zhuotai Zhong
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Wangjing Zhonghuan South Road, Futong East Street, Chaoyang District, Beijing City, China
| | - Shuting Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55, Inner Ring West Road, Panyu District, Guangzhou, Guangzhou, Guangdong Province, 511400, China
| | - Peiwu Li
- Department of Hepatobiliary, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| | - Qilong Jiang
- Department of Myopathies, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| | - Fengbin Liu
- Department of Hepatobiliary, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 2 He Longqi Road, Renhe, Baiyun District, Guangzhou, 510000, China.
- Institute of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| |
Collapse
|
3
|
Hossen MM, Ma Y, Yin Z, Xia Y, Du J, Huang JY, Huang JJ, Zou L, Ye Z, Huang Z. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front Immunol 2023; 14:1198365. [PMID: 37497212 PMCID: PMC10367421 DOI: 10.3389/fimmu.2023.1198365] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the production of autoreactive lymphocytes, immune responses to self-antigens, and inflammation in related tissues and organs. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is majorly expressed in activated T cells and works as a critical regulator in the inflammatory response. In this review, we first describe the structure, expression, and how the signaling pathways of CTLA-4 participate in reducing effector T-cell activity and enhancing the immunomodulatory ability of regulatory T (Treg) cells to reduce immune response, maintain immune homeostasis, and maintain autoimmune silence. We then focused on the correlation between CTLA-4 and different ADs and how this molecule regulates the immune activity of the diseases and inhibits the onset, progression, and pathology of various ADs. Finally, we summarized the current progress of CTLA-4 as a therapeutic target for various ADs.
Collapse
Affiliation(s)
- Md Munnaf Hossen
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yanmei Ma
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yuhao Xia
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jim Yi Huang
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Jennifer Jin Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Linghua Zou
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Rehabilitation Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
4
|
Wang Y, Huan X, Jiao K, Jiang Q, Goh LY, Shi J, Lv Z, Xi J, Song J, Yan C, Lin J, Zhu W, Zhu X, Zhou Z, Xia R, Luo S, Zhao C. Plasma exchange versus intravenous immunoglobulin in AChR subtype myasthenic crisis: A prospective cohort study. Clin Immunol 2022; 241:109058. [PMID: 35690385 DOI: 10.1016/j.clim.2022.109058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
Myasthenic crisis (MC) is a life-threatening state with respiratory failure in patients with myasthenia gravis (MG). The fast-acting immunomodulatory therapies for treating MC included plasma exchange (PE) and intravenous immunoglobulin (IVIG). However, the efficacy and the impact on antibody changes remained unknown. We prospectively followed 40 anti-acetylcholine receptors (AChR) antibody-positive MC patients who received either PE (n = 12) or IVIG (n = 28) at crisis. PE was associated with a reduced ICU stay length (p = 0.018) and an early response by the average changes in MGFA-QMG (p = 0.003), MMT (p = 0.020), and ADL (p = 0.011) at one-week off-ventilation. However, the clinical efficacy was equally comparable in both groups after 1 month. Post-treatment hemoglobin drop was significant in both groups, while IVIG was associated with a significant reduction in anti-AChR antibody titers (p < 0.001). This analysis provides real-world evidence in supporting the use of PE as a fast-acting therapy for shortening the ICU stay in AChR-associated MC.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Blood Transfusion, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Xiao Huan
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Kexin Jiao
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Qilong Jiang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Ying Goh
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianquan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiguo Lv
- Changchun University of Chinese Medicine Department of Neurology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Jianying Xi
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Jie Song
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Chong Yan
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Jie Lin
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Wenhua Zhu
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Xinfang Zhu
- Department of Blood Transfusion, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Blood Transfusion, Huashan Hospital Fudan University, Shanghai 200040, China.
| | - Sushan Luo
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China.
| | - Chongbo Zhao
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China.
| | | |
Collapse
|
5
|
Simón-Fuentes M, Sánchez-Ramón S, Fernández-Paredes L, Alonso B, Guevara-Hoyer K, Vega MA, Corbí AL, Domínguez-Soto Á. Intravenous Immunoglobulins Promote an Expansion of Monocytic Myeloid-Derived Suppressor Cells (MDSC) in CVID Patients. J Clin Immunol 2022; 42:1093-1105. [PMID: 35486340 PMCID: PMC9053130 DOI: 10.1007/s10875-022-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Common variable immunodeficiency disorders (CVID), the most common primary immune deficiency, includes heterogeneous syndromes characterized by hypogammaglobulinemia and impaired antibody responses. CVID patients frequently suffer from recurrent infections and inflammatory conditions. Currently, immunoglobulin replacement therapy (IgRT) is the first-line treatment to prevent infections and aminorate immune alterations in CVID patients. Intravenous Immunoglobulin (IVIg), a preparation of highly purified poly-specific IgG, is used for treatment of immunodeficiencies as well as for autoimmune and inflammatory disorders, as IVIg exerts immunoregulatory and anti-inflammatory actions on innate and adaptive immune cells. To determine the mechanism of action of IVIg in CVID in vivo, we determined the effect of IVIg infusion on the transcriptome of peripheral blood mononuclear cells from CVID patients, and found that peripheral blood monocytes are primary targets of IVIg in vivo, and that IVIg triggers the acquisition of an anti-inflammatory gene profile in human monocytes. Moreover, IVIg altered the relative proportions of peripheral blood monocyte subsets and enhanced the proportion of CD14+ cells with a transcriptional, phenotypic, and functional profile that resembles that of monocytic myeloid-derived suppressor cells (MDSC). Therefore, our results indicate that CD14 + MDSC-like cells might contribute to the immunoregulatory effects of IVIg in CVID and other inflammatory disorders.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | | | | | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.,Hospital Universitario Clínico San Carlos, IML and IdSSC, Madrid, Spain
| | | | - Miguel A Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Angel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| | - Ángeles Domínguez-Soto
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Dalakas MC, Meisel A. Immunomodulatory effects and clinical benefits of intravenous immunoglobulin in myasthenia gravis. Expert Rev Neurother 2022; 22:313-318. [PMID: 35350948 DOI: 10.1080/14737175.2022.2057223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an antibody-mediated disease that develops in the majority of patients mainly as a result of acetylcholine receptor (AChR) autoantibodies. This process is mediated by a series of immunoregulatory events. Therapeutic targets for MG include suppression of circulating antibodies or antibody production, suppression of complement activation, and immunomodulation of cytokines or T cells. Intravenous immunoglobulin (IVIg) has an effect on all of these mechanisms. AREAS COVERED This narrative review explores the broad immunomodulatory effects of IVIg in MG and provides an update on IVIg treatment for MG. EXPERT OPINION IVIg has a range of immunomodulatory effects on therapeutic targets relevant to the immunopathogenesis of MG. An emerging area of research is the pharmacogenomics of IVIg in MG related to FcRn and IgG catabolism. New data indicate that the FcRn VNTR3 genotype can affect the efficacy of IVIg in certain MG patients and may have an impact on IgG kinetics and selected dosing. Immune globulin 10% caprylate/chromatography purified (IVIg-C) has been shown to reverse the symptoms of severe acute exacerbation in patients with MG. Available data support the use of IVIg-C as an effective and safe treatment for this severely ill subgroup of patients during a relapse.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andreas Meisel
- Department of Neurology, Integrated Center for Myasthenia Gravis, Charité - University Medicine Berlin, Germany
| |
Collapse
|
7
|
Arumugam T, Ramphal U, Adimulam T, Chinniah R, Ramsuran V. Deciphering DNA Methylation in HIV Infection. Front Immunol 2021; 12:795121. [PMID: 34925380 PMCID: PMC8674454 DOI: 10.3389/fimmu.2021.795121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million new global infections per year, it is imperative that we advance our understanding of all factors contributing to HIV infection. While most studies have focused on the influence of host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention. Epigenetics involves alterations in gene expression without altering the DNA sequence. DNA methylation is a critical epigenetic mechanism that influences both viral and host factors. This review has five focal points, which examines (i) fluctuations in the expression of methylation modifying factors upon HIV infection (ii) the effect of DNA methylation on HIV viral genes and (iii) host genome (iv) inferences from other infectious and non-communicable diseases, we provide a list of HIV-associated host genes that are regulated by methylation in other disease models (v) the potential of DNA methylation as an epi-therapeutic strategy and biomarker. DNA methylation has also been shown to serve as a robust therapeutic strategy and precision medicine biomarker against diseases such as cancer and autoimmune conditions. Despite new drugs being discovered for HIV, drug resistance is a problem in high disease burden settings such as Sub-Saharan Africa. Furthermore, genetic therapies that are under investigation are irreversible and may have off target effects. Alternative therapies that are nongenetic are essential. In this review, we discuss the potential role of DNA methylation as a novel therapeutic intervention against HIV.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Upasana Ramphal
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Romona Chinniah
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Piotrowska M, Gliwiński M, Trzonkowski P, Iwaszkiewicz-Grzes D. Regulatory T Cells-Related Genes Are under DNA Methylation Influence. Int J Mol Sci 2021; 22:7144. [PMID: 34281195 PMCID: PMC8267835 DOI: 10.3390/ijms22137144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) exert a highly suppressive function in the immune system. Disturbances in their function predispose an individual to autoimmune dysregulation, with a predominance of the pro-inflammatory environment. Besides Foxp3, which is a master regulator of these cells, other genes (e.g., Il2ra, Ctla4, Tnfrsf18, Ikzf2, and Ikzf4) are also involved in Tregs development and function. Multidimensional Tregs suppression is determined by factors that are believed to be crucial in the action of Tregs-related genes. Among them, epigenetic changes, such as DNA methylation, tend to be widely studied over the past few years. DNA methylation acts as a repressive mark, leading to diminished gene expression. Given the role of increased CpG methylation upon Tregs imprinting and functional stability, alterations in the methylation pattern can cause an imbalance in the immune response. Due to the fact that epigenetic changes can be reversible, so-called epigenetic modifiers are broadly used in order to improve Tregs performance. In this review, we place emphasis on the role of DNA methylation of the genes that are key regulators of Tregs function. We also discuss disease settings that have an impact on the methylation status of Tregs and systematize the usefulness of epigenetic drugs as factors able to influence Tregs functions.
Collapse
Affiliation(s)
| | | | | | - Dorota Iwaszkiewicz-Grzes
- Department of Medical Immunology, Medical University of Gdansk, 80-210 Gdańsk, Poland; (M.P.); (M.G.); (P.T.)
| |
Collapse
|
9
|
New insights into IVIg mechanisms and alternatives in autoimmune and inflammatory diseases. Curr Opin Hematol 2021; 27:392-398. [PMID: 32868670 DOI: 10.1097/moh.0000000000000609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Intravenous immunoglobulin (IVIg) is an effective treatment for an increasing number of autoimmune and inflammatory conditions. However, IVIg continues to be limited by problems of potential shortages and cost. A number of mechanisms have been described for IVIg, which have been captured in newly emergent IVIg mimetic and IVIg alternative therapies. This review discusses the recent developments in IVIg mimetics and alternatives. RECENT FINDINGS Newly emergent IVIg mimetics and alternatives capture major proposed mechanisms of IVIg, including FcγR blockade, FcRn inhibition, complement inhibition, immune complex mimetics and sialylated IgG. Many of these emergent therapies have promising preclinical and clinical trial results. SUMMARY Significant research has been undertaken into the mechanism of IVIg in the treatment of autoimmune and inflammatory disease. Understanding the major IVIg mechanisms has allowed for rational development of IVIg mimetics and alternatives for several IVIg-treatable diseases.
Collapse
|
10
|
Lin W, Lin A, Li Z, Zhou C, Chen C, Chen B, Lyu Q, Zhang J, Luo P. Potential predictive value of SCN4A mutation status for immune checkpoint inhibitors in melanoma. Biomed Pharmacother 2020; 131:110633. [PMID: 32892029 DOI: 10.1016/j.biopha.2020.110633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma refers to a pigmented nevus with malignant changes. The preferred treatment for primary melanoma is surgical excision and postoperative radiotherapy, but the prognosis is poor. Immune checkpoint inhibitors (ICIs) have been remarkably successful in different types of cancers, but not all cancer patients can benefit from it. Therefore, it is essential to find predictable biomarkers and improve the accuracy of treatment. In this study, we used survival analysis, gene panorama analysis, immune cell enrichment analysis, TMB analysis, and GSEA to demonstrate that SCN4A gene mutations may be used as one of the indicators to predict the prognosis of melanoma patients undergoing ICI treatment. The research further indicates that SCN4A gene mutations improve the prognosis of ICI treatment. It is hoped that the effect of SCN4A on immunogenicity and tumor immunity can be demonstrated to further suggest the effect of this gene on the efficacy of ICIs.
Collapse
Affiliation(s)
- Weiyin Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhefu Li
- Central Sterile Supply Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chufeng Chen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Boliang Chen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Guangdong Fusion Application Engineering Center of Medical Big Data, Guangzhou, Guangdong, People's Republic of China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|