1
|
Wu J, Zheng W, Luo P, Lin Z, Li F, Liang L, Liu H. Structural characterization of a water-soluble acidic polysaccharide CSP-IV with potential anticoagulant activity from fruit pulp of Clausena lansium (Lour.) Skeels Guifei. Int J Biol Macromol 2024; 254:128029. [PMID: 37952330 DOI: 10.1016/j.ijbiomac.2023.128029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Four main water-soluble wampee fruit pulp polysaccharides, named CSP-I, CSP-II, CSP-III and CSP-IV, were isolated from Clausena lansium (Lour.) Skeels Guifei, therein CSP-IV content was higher than the others. All components possess certain anticoagulant activity demonstrated by prolonged activated partial thromboplastin time, especially CSP-IV, which suggests that CSP-IV plays anticoagulant effect through disturbing intrinsic coagulation pathway. The wampee polysaccharide CSP-IV with Mw of 510.1 kDa was mainly composed of Gal, Ara and GalA. Backbone of CSP-IV contains Gal, Ara and GalA, two kinds of side chains contain one monosaccharide Gal or Ara, both branch on Gal residue of backbone. CSP-IV has no the conformation of triple helix demonstrated by Congo red test. These results showed that CSP-IV is an acidic polysaccharide with potential anticoagulant activity via targeting intrinsic coagulation pathway.
Collapse
Affiliation(s)
- Jiayi Wu
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wenyan Zheng
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ping Luo
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Lin
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Fangping Li
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Linlin Liang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huazhong Liu
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Deng H, Wu G, Zhang R, Yin Q, Xu B, Zhou L, Chen Z. Comparative nutritional and metabolic analysis reveals the taste variations during yellow rambutan fruit maturation. Food Chem X 2023; 17:100580. [PMID: 36845499 PMCID: PMC9944575 DOI: 10.1016/j.fochx.2023.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The metabolic reasons for rambutan taste variations during maturity are unknown. Here, we obtained a unique rambutan cultivar Baoyan No.2 (BY2) with a strong yellow pericarp and excellent taste, the sugar-acid ratios of which ranged from 21.7 to 94.5 during maturation. Widely targeted metabolomics analysis was performed to reveal the metabolic reasons behind these taste variations. The results showed that 51 metabolites were identified as common different metabolites (DMs), including 16 lipids, 12 amino acids and others. Among them, the abundance level of 3,4-digalloylshikimic acid exhibited a positive correlation with the titratable acids (R2 = 0.9996) and a negative correlation with the sugar-acid ratio (R2 = 0.9999). Therefore, it could be a taste biomarker of BY2 rambutan. Moreover, all DMs were enriched in "galactose metabolism", "fructose and mannose metabolism" and "biosynthesis of amino acids" pathways, which predominantly accounted for the taste variation. Our findings provided new metabolic evidence for the taste variation of rambutan.
Collapse
Affiliation(s)
- Hao Deng
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 571100, China
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry of Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
| | - Guang Wu
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 571100, China
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry of Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
| | - Ronghu Zhang
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 571100, China
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry of Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
| | - Qingchun Yin
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality Safety for State Market Regulation, Haikou 570311, China
| | - Bin Xu
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 571100, China
| | - Liying Zhou
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 571100, China
| | - Zhe Chen
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry of Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
- Corresponding author at: Hainan Academy of Agricultural Sciences, Haikou, Hainan Province, China.
| |
Collapse
|
3
|
Chang X, Ye Y, Pan J, Lin Z, Qiu J, Peng C, Guo X, Lu Y. Comparative Analysis of Phytochemical Profiles and Antioxidant Activities between Sweet and Sour Wampee ( Clausena lansium) Fruits. Foods 2022; 11:1230. [PMID: 35563953 PMCID: PMC9103836 DOI: 10.3390/foods11091230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
As a local medicine and food, wampee fruit, with abundant bioactive compounds, is loved by local residents in Southern China. Titratable acid (TA), total sugar (TS), and total phenolic and flavonoid contents were detected, and phytochemical profiles and cellular antioxidant activities were analyzed by the HPLC and CAA (cellular antioxidant activity) assay in five sweet wampee varieties and five sour wampee varieties. Results showed that the average TS/TA ratio of sweet wampee varieties was 29 times higher than sour wampee varieties, while TA content was 19 times lower than sour wampee varieties. There were much lower levels of total phenolics, flavonoids, and antioxidant activities in sweet wampee varieties than those in sour wampee varieties. Eight phytochemicals were detected in sour wampee varieties, including syringin, rutin, benzoic acid, 2-methoxycinnamic acid, kaempferol, hesperetin, nobiletin, and tangeretin, while just four of them were detected in sweet wampee varieties. Syringin was the only one that was detected in all the sour wampee varieties and was not detected in all sweet wampee varieties. Correlation analysis showed significant positive correlations between TA with phenolics, flavonoids, and total and cellular (PBS wash) antioxidant activities, while there were significant negative correlations between TS/TA with phenolic and cellular (no PBS wash) antioxidant activities. This suggested that the content of titratable acid in wampee fruit might have some relationship with the contents of phenolics and flavonoids. Sour wampee varieties should be paid much attention by breeders for their high phytochemical contents and antioxidant activities for cultivating germplasms with high health care efficacy.
Collapse
Affiliation(s)
- Xiaoxiao Chang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.C.); (J.P.); (Z.L.); (J.Q.); (C.P.)
| | - Yutong Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Jianping Pan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.C.); (J.P.); (Z.L.); (J.Q.); (C.P.)
| | - Zhixiong Lin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.C.); (J.P.); (Z.L.); (J.Q.); (C.P.)
| | - Jishui Qiu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.C.); (J.P.); (Z.L.); (J.Q.); (C.P.)
| | - Cheng Peng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.C.); (J.P.); (Z.L.); (J.Q.); (C.P.)
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Yusheng Lu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.C.); (J.P.); (Z.L.); (J.Q.); (C.P.)
| |
Collapse
|
4
|
Yin QC, Ji JB, Zhang RH, Duan ZW, Xie H, Chen Z, Hu FC, Deng H. Identification and verification of key taste components in wampee using widely targeted metabolomics. Food Chem X 2022; 13:100261. [PMID: 35499032 PMCID: PMC9040002 DOI: 10.1016/j.fochx.2022.100261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
Due to the lack of comprehensive evaluation of all metabolites in wampee, the metabolic reasons for taste differences are unclear. Here, two local varieties YF1 (sweet taste) and YF2 (sweet-sour taste), were selected for quality analysis, followed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based widely targeted metabolomic analysis. YF1 and YF2 were clearly separated by principal component analysis (PCA) and cluster analysis, and 449 metabolites were different between the cultivars, including 29 carbohydrates and 29 organic acids. Among them, d-galactose, d-mannose, and d-fructose 6-phosphate contributed mainly to the sweet taste of the YF1 wampee. l-citramalic acid, 2-hydroxyglutaric acid, and 3-methylmalic acid were the dominant organic acids in YF2 wampee, and therefore, contributed primarily to the sweet-sour taste. The differential metabolites were significantly enriched in the "ascorbate and aldarate metabolism" and "C5-branched dibasic acid metabolism" pathways. Ascorbate played a crucial role in the regulation of sugars and organic acids through those pathways. In addition, high-performance liquid chromatography (HPLC) based quantitative verification exhibited the same specific cultivar variations.
Collapse
Affiliation(s)
- Qing-Chun Yin
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 570100, China.,Hainan Institute for Food Control / Key Laboratory of Tropical Fruits and Vegetables Quality Safety for State Market Regulation, Haikou 570311, China
| | - Jian-Bang Ji
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 570100, China.,Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya, 572019, China
| | - Rong-Hu Zhang
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 570100, China
| | - Zhou-Wei Duan
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 570100, China
| | - Hui Xie
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 570100, China
| | - Zhe Chen
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 570100, China
| | - Fu-Chu Hu
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 570100, China
| | - Hao Deng
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 570100, China.,Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya, 572019, China
| |
Collapse
|