1
|
Murao N, Morikawa R, Seino Y, Shimomura K, Maejima Y, Yamada Y, Suzuki A. Sildenafil amplifies calcium influx and insulin secretion in pancreatic β cells. Physiol Rep 2024; 12:e16091. [PMID: 38862270 PMCID: PMC11166479 DOI: 10.14814/phy2.16091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Sildenafil, a phosphodiesterase-5 (PDE5) inhibitor, has been shown to improve insulin sensitivity in animal models and prediabetic patients. However, its other metabolic effects remain poorly investigated. This study examines the impact of sildenafil on insulin secretion in MIN6-K8 mouse clonal β cells. Sildenafil amplified insulin secretion by enhancing Ca2+ influx. These effects required other depolarizing stimuli in MIN6-K8 cells but not in KATP channel-deficient β cells, which were already depolarized, indicating that sildenafil-amplified insulin secretion is depolarization-dependent and KATP channel-independent. Interestingly, sildenafil-amplified insulin secretion was inhibited by pharmacological inhibition of R-type channels, but not of other types of voltage-dependent Ca2+ channels (VDCCs). Furthermore, sildenafil-amplified insulin secretion was barely affected when its effect on cyclic GMP was inhibited by PDE5 knockdown. Thus, sildenafil stimulates insulin secretion and Ca2+ influx through R-type VDCCs independently of the PDE5/cGMP pathway, a mechanism that differs from the known pharmacology of sildenafil and conventional insulin secretory pathways. Our results reposition sildenafil as an insulinotropic agent that can be used as a potential antidiabetic medicine and a tool to elucidate the novel mechanism of insulin secretion.
Collapse
Affiliation(s)
- Naoya Murao
- Department of Endocrinology, Diabetes and MetabolismSchool of Medicine, Fujita Health UniversityToyoakeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Risa Morikawa
- Department of Endocrinology, Diabetes and MetabolismSchool of Medicine, Fujita Health UniversityToyoakeJapan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and MetabolismSchool of Medicine, Fujita Health UniversityToyoakeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological MedicineSchool of Medicine, Fukushima Medical UniversityFukushimaJapan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological MedicineSchool of Medicine, Fukushima Medical UniversityFukushimaJapan
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and MetabolismSchool of Medicine, Fujita Health UniversityToyoakeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and MetabolismSchool of Medicine, Fujita Health UniversityToyoakeJapan
| |
Collapse
|
2
|
Garcia-Gonzalez MA, Vallejo-Ruiz V, Atonal-Flores F, Flores-Hernandez J, Torres-Ramírez O, Diaz-Fonsecae A, Perez Vizcaino F, Lopez-Lopez JG. Sildenafil prevents right ventricular hypertrophy and improves heart rate variability in rats with pulmonary hypertension secondary to experimental diabetes. Clin Exp Hypertens 2022; 44:355-365. [DOI: 10.1080/10641963.2022.2050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Miguel Angel Garcia-Gonzalez
- Departamento de Farmacia, Benemerita Universidad Autonoma de Puebla, Laboratorio de Farmacia Clinica, Edificio FCQ10, Ciudad Universitaria, Col. Jardines de San Manuel, Puebla, Mexico
| | - Veronica Vallejo-Ruiz
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, Puebla, Mexico
| | - Fausto Atonal-Flores
- Departamento de Fisiología, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Metepec, Mexico
| | - Jorge Flores-Hernandez
- Laboratorio de Neuromodulación, Benemerita Universidad Autonoma de Puebla, Fisiología, Puebla,Mexico
| | - Oswaldo Torres-Ramírez
- Departamento de Farmacia, Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Puebla, Mexico
| | - Alfonso Diaz-Fonsecae
- Departamento de Farmacia, Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Puebla, Mexico
| | - Francisco Perez Vizcaino
- Departamento de Farmacología y Toxicología, Universidad Complutense de Madrid, Escuela de Medicina, Puebla,Mexico
| | - Jose Gustavo Lopez-Lopez
- Departamento de Farmacia, Benemerita Universidad Autonoma de Puebla, Laboratorio de Farmacia Clinica, Edificio FCQ10, Ciudad Universitaria, Col. Jardines de San Manuel, Puebla, Mexico
| |
Collapse
|
3
|
Abstract
INTRODUCTION The number of diabetic patients is increasing, posing a heavy social and economic burden worldwide. Traditional drug development technology is time-consuming and costly, and the emergence of computer-aided drug design (CADD) has changed this situation. This study reviews the applications of CADD in diabetic drug designing. AREAS COVERED In this article, the authors focus on the advance in CADD in diabetic drug design by elaborating the discovery, including peroxisome proliferator-activated receptor (PPAR), G protein-coupled receptor 40 (GPR40), dipeptidyl peptidase-IV (DDP-IV), protein tyrosine phosphatase 1B (PTP1B), sodium-dependent glucose transporter 2 (SGLT-2), and glucokinase (GK). Some drug discovery of these targets is related to CADD strategies. EXPERT OPINION There is no doubt that CADD has contributed to the discovery of novel anti-diabetic agents. However, there are still many limitations and challenges, such as lack of co-crystal complex, dynamic simulations, water, and metal ion treatment. In the near future, artificial intelligence (AI) may be a promising strategy to accelerate drug discovery and reduce costs by identifying candidates. Moreover, AlphaFold, a deep learning model that predicts the 3D structure of proteins, represents a considerable advancement in the structural prediction of proteins, especially in the absence of homologous templates for protein structures.
Collapse
Affiliation(s)
- Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
4
|
Luongo F, Miotti C, Scoccia G, Papa S, Manzi G, Cedrone N, Toto F, Malerba C, Papa G, Caputo A, Manguso G, Adamo F, Carmine DV, Badagliacca R. Future perspective in diabetic patients with pre- and post-capillary pulmonary hypertension. Heart Fail Rev 2022; 28:745-755. [PMID: 35098382 DOI: 10.1007/s10741-021-10208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Pulmonary hypertension is a clinical syndrome that may include multiple clinical conditions and can complicate the majority of cardiovascular and respiratory diseases. Pulmonary hypertension secondary to left heart disease is the prevalent clinical condition and accounts for two-thirds of all cases. Type 2 diabetes mellitus, which affects about 422 million adults worldwide, has emerged as an independent risk factor for the development of pulmonary hypertension in patients with left heart failure. While a correct diagnosis of pulmonary hypertension secondary to left heart disease requires invasive hemodynamic evaluation through right heart catheterization, several scores integrating clinical and echocardiographic parameters have been proposed to discriminate pre- and post-capillary types of pulmonary hypertension. Despite new emerging evidence on the pathophysiological mechanisms behind the effects of diabetes in patients with pre- and/or post-capillary pulmonary hypertension, no specific drug has been yet approved for this group of patients. In the last few years, the attention has been focused on the role of antidiabetic drugs in patients with pulmonary hypertension secondary to left heart failure, both in animal models and in clinical trials. The aim of the present review is to highlight the links emerged in the recent years between diabetes and pre- and/or post-capillary pulmonary hypertension and new perspectives for antidiabetic drugs in this setting.
Collapse
Affiliation(s)
- Federico Luongo
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Cristiano Miotti
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Gianmarco Scoccia
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Silvia Papa
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Giovanna Manzi
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Nadia Cedrone
- Internal Medicine Department, S. Pertini Hospital, Via dei Monti Tiburtini, 385, 00157, Roma RM. Rome, Italy
| | - Federica Toto
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Claudia Malerba
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Gennaro Papa
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Annalisa Caputo
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Giulia Manguso
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Francesca Adamo
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Dario Vizza Carmine
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy.
| |
Collapse
|