1
|
Camilleri E, Blundell R, Baral B, Karpinski TM, Aruci E, Atrooz OM. A brief overview of the medicinal and nutraceutical importance of Inonotus obliquus (chaga) mushrooms. Heliyon 2024; 10:e35638. [PMID: 39170453 PMCID: PMC11336990 DOI: 10.1016/j.heliyon.2024.e35638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
This literature review offers an extensive exploration of Chaga mushrooms (Inonotus obliquus), focusing on their phytochemical composition, health-promoting attributes, and mechanisms of action. The aim was to provide an up-to-date overview of Chaga's significance in the medicinal sector, emphasizing its potential role in diverse health benefits. The review highlights Chaga's remarkable anticancer, antioxidant, anti-diabetic, anti-inflammatory, antimicrobial, and immunomodulating properties. By synthesizing recent findings, this work underscores Chaga's importance in the medicinal industries and provides valuable insights into its pharmacological potential.
Collapse
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Imsida, Malta
| | - Bikash Baral
- University of Helsinki, Helsinki, Finland
- Institute of Biological Resources (IBR), Kathmandu, Nepal
| | - Tomasz M. Karpinski
- Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806, Poznań, Poland
| | - Edlira Aruci
- Western Balkans University, Autostrada Tirane-Durres km 7, Albania
| | - Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Department of Biological Sciences, Mutah University, P.O.Box(7), Mutah, Jordan
| |
Collapse
|
2
|
Ju H, Liu Y, Gong J, Gong PX, Wang ZX, Wu YC, Li HJ. Revolutionizing cancer treatment: Harnessing the power of terrestrial microbial polysaccharides. Int J Biol Macromol 2024; 274:133171. [PMID: 38880444 DOI: 10.1016/j.ijbiomac.2024.133171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Cancer treatment faces numerous challenges, such as inadequate drug targeting, steep price tags, grave toxic side effects, and limited therapeutic efficacy. Therefore, there is an urgent need for a safe and effective new drug to combat cancer. Microbial polysaccharides, complex and diverse biological macromolecules, exhibit significant microbial variability and uniqueness. Studies have shown that terrestrial microbial polysaccharides possess a wide range of biological activities, including immune enhancement, antioxidant properties, antiviral effects, anti-tumour potential, and hypoglycemic functions. To delve deeper into the structure-activity relationship of these land-based microbial polysaccharides against cancer, we conducted a comprehensive review and analysis of anti-cancer literature published between 2020 and 2024. The anticancer efficacy of terrestrial microbial polysaccharides is influenced by multiple factors, including the microbial species, existing form, chemical structure, and polysaccharide purity. According to the literature, an optimal molecular weight and good water solubility are essential for demonstrating anticancer activity. Furthermore, the addition of mannose and galactose has been found to significantly enhance the anticancer properties of these polysaccharides. These insights will serve as a valuable reference for future research and progress in the field of cancer drug therapy, particularly with regards to terrestrial microbial polysaccharides.
Collapse
Affiliation(s)
- Hao Ju
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Harbin 150006, PR China; Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yang Liu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Jun Gong
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Pi-Xian Gong
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| | - Zi-Xuan Wang
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yan-Chao Wu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Harbin 150006, PR China; Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| |
Collapse
|
3
|
Ern PTY, Quan TY, Yee FS, Yin ACY. Therapeutic properties of Inonotus obliquus (Chaga mushroom): A review. Mycology 2023; 15:144-161. [PMID: 38813471 PMCID: PMC11132974 DOI: 10.1080/21501203.2023.2260408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 05/31/2024] Open
Abstract
Inonotus obliquus, also known as Chaga, is a medicinal mushroom that has been used for therapeutic purposes since the sixteenth century. Collections of folk medicine record the application of Chaga for the treatment of diseases such as gastrointestinal cancer, diabetes, bacterial infection, and liver diseases. Modern research provides scientific evidence of the therapeutic properties of I. obliquus extracts, including anti-inflammatory, antioxidant, anticancer, anti-diabetic, anti-obesity, hepatoprotective, renoprotective, anti-fatigue, antibacterial, and antiviral activities. Various bioactive compounds, including polysaccharides, triterpenoids, polyphenols, and lignin metabolites have been found to be responsible for the health-benefiting properties of I. obliquus. Furthermore, some studies have elucidated the underlying mechanisms of the mushroom's medicinal effects, revealing the compounds' interactions with enzymes or proteins of important pathways. Thus, this review aims to explore available information on the therapeutic potentials of Inonotus obliquus for the development of an effective naturally sourced treatment option.
Collapse
Affiliation(s)
- Phoebe Tee Yon Ern
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Tang Yin Quan
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Fung Shin Yee
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeline Chia Yoke Yin
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Li M, Hu Z, Guo T, Xie T, Tang Y, Wu X, Luo F. Targeting mTOR Signaling by Dietary Polysaccharides in Cancer Prevention: Advances and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:96-109. [PMID: 36541706 DOI: 10.1021/acs.jafc.2c06780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer is the most serious problem for public health. Traditional treatments often come with unavoidable side effects. Therefore, the therapeutic effects of natural products with wide sources and low toxicity are attracting more and more attention. Polysaccharides have been shown to have cancer-fighting potential, but the molecular mechanisms remain unclear. The mammalian target of rapamycin (mTOR) pathway has become an attractive target of antitumor therapy research in recent years. The regulation of mTOR pathway not only affects cell proliferation and growth but also has an important effect in tumor metabolism. Recent studies indicate that dietary polysaccharides play a vital role in cancer prevention and treatment by regulating mTOR pathway. Here, the progress in targeting mTOR signaling by dietary polysaccharides in cancer prevention and their molecular mechanisms are systemically summarized. It will promote the understanding of the anticancer effects of polysaccharides and provide reference to investigators of this cutting edge field.
Collapse
Affiliation(s)
- Mengyuan Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yanqin Tang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiuxiu Wu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
5
|
Lin J, Lu YY, Shi HY, Lin P. Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes), Polysaccharides Alleviate Photoaging by Regulating Nrf2 Pathway and Autophagy. Int J Med Mushrooms 2023; 25:49-64. [PMID: 37830196 DOI: 10.1615/intjmedmushrooms.2023049657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Inonotus obliquus is a medicinal mushroom that contains the valuable I. obliquus polysaccharides (IOP), which is known for its bioactive properties. Studies have shown that IOP could inhibit oxidative stress induced premature aging and DNA damage, and delay body aging. However, the molecular mechanism of IOP in improving skin photoaging remains unclear, which prevents the development and utilization of I. obliquus in the field of skin care. In this study, ultraviolet B (UVB) induced human immortalized keratinocyte (HaCaT) cell photoaging model was used to explore the mechanism of IOP in relieving skin photoaging. Results showed that IOP inhibited cell senescence and apoptosis by reducing the protein expressions of p16, p21, and p53. IOP increased HO-1, SOD, and CAT expressions to achieve Nrf2/HO-1 pathway, thus improving antioxidant effects and preventing ROS generation. Furthermore, IOP enhanced the expression levels of p-AMPK, LC3B, and Beclin-1 to alleviate the autophagy inhibition in UVB-induced HaCaT cells. Based on these findings, our data suggested that IOP may be used to develop effective natural anti-photoaging ingredients to promote skin health.
Collapse
Affiliation(s)
- Jun Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Yin-Ying Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong-Yu Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Pei Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
In Vitro Immunomodulatory Effects of Inonotus obliquus Extracts on Resting M0 Macrophages and LPS-Induced M1 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8251344. [PMID: 35497923 PMCID: PMC9050302 DOI: 10.1155/2022/8251344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022]
Abstract
Background Inonotus obliquus (Chaga) is a parasitic fungus that is distributed mainly in northeast China. Our literature research showed chaga polysaccharides have bilateral effects on tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels when they exert antitumor and antidiabetic activities. The current research tried to explore the influence of chaga extracts on inflammatory factors via macrophage polarization which has bilateral immune-regulation not only on healthy tissue homeostasis but also on pathologies. Methods Chaga was extracted with 100°C water and precipitated with 80% ethanol. The extracts were studied on RAW264.7 macrophage at resting condition (M0) and lipopolysaccharide (LPS)-activated subtype (classic activated macrophage, M1). The IL-1β, TNF-α, nitric oxide (NO) level, and the protein expressions of M1 and alternative activated macrophage (M2) markers including IL-1β, inducible NO synthase (iNOS), mannose receptor (CD206), and arginase (Arg)-1 were compared. Results The 100 g extracts contained 13.7 g polysaccharides and 1.9 g polyphenols. Compared with M0, the 50 μg/mL extracts increased NO level (P < 0.05) and decreased CD206 and Arg-1 expression significantly (P < 0.05). The extracts at 100–200 μg/mL increased NO and TNF-α level (P < 0.05), but increased iNOS and IL-1β expression significantly (P < 0.05). Compared with M1, the extracts decreased NO level at 25, 50, 100, and 200 μg/mL and decreased IL-1β and TNF-α level at 100–200 μg/mL significantly (P < 0.05). At 25–200 μg/mL, the extracts significantly increased CD206 and Arg-1 expression and decreased IL-1β and iNOS expression separately (P < 0.05). Conclusions Our research suggested that the bilateral effects of the chaga extracts on iNOS, IL-1β, and NO level on M0/M1 macrophages might be related with chaga polysaccharides and chaga polyphenols. Some in vivo anticancer and antidiabetic research of purified chaga polysaccharides related to macrophage differentiation should be conducted further.
Collapse
|
7
|
Lu Y, Jia Y, Xue Z, Li N, Liu J, Chen H. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers (Basel) 2021; 13:1441. [PMID: 33947037 PMCID: PMC8124789 DOI: 10.3390/polym13091441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Inonotus obliquus (Chaga mushroom) is a kind of medicine and health food widely used by folk in China, Russia, Korea, and some occidental countries. Among the extracts from Inonotus obliquus, Inonotus obliquus polysaccharide (IOPS) is supposed to be one of the major bioactive components in Inonotus obliquus, which possesses antitumor, antioxidant, anti-virus, hypoglycemic, and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics, and biological activities of IOPS were summarized. This review can provide significant insight into the IOPS bioactivities as their in vitro and in vivo data were summarized, and some possible mechanisms were listed. Furthermore, applications of IOPS were reviewed and discussed; IOPS might be a potential candidate for the treatment of cancers and type 2 diabetes. Besides, new perspectives for the future work of IOPS were also proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Y.L.); (Y.J.); (Z.X.); (N.L.); (J.L.)
| |
Collapse
|