1
|
Huan DQ, Hop NQ, Son NT. Wikstroemia: A Review on its Phytochemistry and Pharmacology. Curr Pharm Biotechnol 2024; 25:563-598. [PMID: 37282648 DOI: 10.2174/1389201024666230606122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Wikstroemia (the family Thymelaeaceae) consists of medicinal plants which established great value in traditional medicines for many years. For instance, W. indica is always recommended for treatments of syphilis, arthritis, whooping cough, and cancer. No systematic review of bioactive compounds from this genus has been recorded to date. OBJECTIVES The objective of the current study is to review phytochemical investigations and pharmacological effects of Wikstroemia plant extracts and isolates. METHODS By searching on the internet, the relevant data about Wikstroemia medicinal plants were retrieved from internationally renowned scientific databases, such as Web of Science, Google Scholar, Sci-Finder, Pubmed, and so on. RESULTS More than 290 structurally diverse metabolites were separated and identified from this genus. They include terpenoids, lignans, flavonoids, coumarins, mono-phenols, diarylpentanoids, fatty acids, phytosterols, anthraquinones, and others. Pharmacological records indicated that Wikstroemia plant crude extracts and their isolated compounds bring out various beneficial effects, such as anticancer, antiinflammatory, anti-aging, anti-viral, antimicrobacterial, antimalarial, neuroprotective, and hepatoprotective activities. CONCLUSION Wikstroemia has been regarded as a worthy genus with numerous phytochemicals and various pharmacological potentials. Modern pharmacological studies have successfully provided evidence for traditional uses. Nonetheless, their action mechanisms need to be further investigated. Although various secondary metabolites were identified from Wikstroemia plants, the current pharmacological research mainly concentrated on terpenoids, lignans, flavonoids, and coumarins.
Collapse
Affiliation(s)
- Duong Quang Huan
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Vietnam
| | - Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 1000, Vietnam
| |
Collapse
|
2
|
Ghazanfari S, Shadbad CA, Meimandipor A, Hosseini SA, Honarbakhsh S. Physiological changes in broiler chickens subjected to dietary ajwain ( trachyspermum ammi l.) essential oil in encapsulated and conventional forms within a wheat-based diet. Vet Anim Sci 2023; 22:100321. [PMID: 38022719 PMCID: PMC10654216 DOI: 10.1016/j.vas.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to investigate the effects of different diet types, forms, and contents of ajwain essential oil (AEO) on various physiological characteristics of broiler chickens, including cell-mediated immunity responses, intestinal morphology, and microflora. A total of 1500 one-day-old male broiler chickens were allocated to different treatments based on a 2 × 3 × 2 factorial arrangement, considering diet types (corn and corn-wheat), contents of AEO (0, 150, and 300 mg/kg of diet), and forms of AEO (conventional and encapsulated). The results indicated that the broiler chickens fed the diet containing 150 ppm EO demonstrated reduced skin thickness in response to a 2,4-dinitrochlorobenzene challenge, 24 h after injection, compared to those receiving a diet without EO (P < 0.05). Increasing the EO content led to an increase in the villous height to crypt depth ratio in the jejunum of broiler chickens receiving 300 ppm EO (P < 0.05). Moreover, there was a slight improvement in the villous height to crypt depth ratio in the jejunum of broiler chickens fed the corn-wheat diet (P = 0.07). Broiler chickens fed the 300 ppm EO showed a lower total bacterial population compared to those fed the 150 ppm EO (P < 0.05). Finally, the use of EO at a content of 150 ppm improved cellular immune response, while EO at a content of 300 ppm improved the morphology and overall population of intestinal bacteria. Furthermore, the inclusion of wheat-corn diets exhibited enhanced morphological characteristics of the intestines. However, the forms of AEO did not exert any significant influence on the physiological traits.
Collapse
Affiliation(s)
- Shokoufe Ghazanfari
- Department of Livestock and Poultry Sciences, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Pakdasht, Iran
| | - Cyrus Akbari Shadbad
- Department of Livestock and Poultry Sciences, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Pakdasht, Iran
| | - Amir Meimandipor
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Abdollah Hosseini
- Department of Animal Nutrition, Animal Science Research Institute of Iran, Alborz, Karaj, Iran
| | - Shirin Honarbakhsh
- Department of Livestock and Poultry Sciences, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Pakdasht, Iran
| |
Collapse
|
3
|
Zhang M, Otsuki K, Takahashi R, Kikuchi T, Zhou D, Li N, Li W. Identification of Daphnane Diterpenoids from Wikstroemia indica Using Liquid Chromatography with Tandem Mass Spectrometry. PLANTS (BASEL, SWITZERLAND) 2023; 12:3620. [PMID: 37896083 PMCID: PMC10609749 DOI: 10.3390/plants12203620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for the rapid identification of compounds within natural resources. Daphnane diterpenoids, a class of natural compounds predominantly found in plants belonging to the Thymelaeaceae and Euphorbiaceae families, have attracted much attention due to their remarkable anticancer and anti-HIV activities. In the present study, the presence of daphnane diterpenoids in Wikstroemia indica, a plant belonging to the Thymelaeaceae family, was investigated by LC-MS/MS analysis. As a result, 21 daphnane diterpenoids (1-21) in the stems of W. indica were detected. Among these, six major compounds (12, 15, 17, 18, 20, and 21) were isolated and their structures were unequivocally identified through a comprehensive analysis of the MS and NMR data. For the minor compounds (1-11, 13, 14, 16, and 19), their structures were elucidated by in-depth MS/MS fragmentation analysis. This study represents the first disclosure of structurally diverse daphnane diterpenoids in W. indica, significantly contributing to our understanding of bioactive diterpenoids in plants within the Thymelaeaceae family.
Collapse
Affiliation(s)
- Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Reo Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Di Zhou
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (D.Z.); (N.L.)
| | - Ning Li
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (D.Z.); (N.L.)
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| |
Collapse
|
4
|
Suntivich R, Songjang W, Jiraviriyakul A, Ruchirawat S, Chatwichien J. LC-MS/MS metabolomics-facilitated identification of the active compounds responsible for anti-allergic activity of the ethanol extract of Xenostegia tridentata. PLoS One 2022; 17:e0265505. [PMID: 35427369 PMCID: PMC9012362 DOI: 10.1371/journal.pone.0265505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022] Open
Abstract
In vivo and in vitro anti-allergic activities of ethanol extract of Xenostegia tridentata (L.) D.F. Austin & Staples were investigated using passive cutaneous anaphylaxis reaction assay and RBL-2H3 cell degranulation assay, respectively. The crude ethanol extract exhibited promising activities when compared with the known anti-allergic agents, namely dexamethasone and ketotifen fumarate. The ethyl acetate subfraction showed the highest anti-allergic activity among various sub-partitions and showed better activity than the crude extract, consistent with the high abundance of total phenolic and flavonoid contents in this subfraction. LC-MS/MS metabolomics analysis and bioassay-guided isolation were then used to identify chemical constituents responsible for the anti-allergic activity. The results showed that major components of the ethyl acetate subfraction consist of 3,5-dicaffeoylquinic acid, quercetin-3-O-rhamnoside, kaempferol-3-O-rhamnoside and luteolin-7-O-glucoside. The inhibitory activity of the isolated compounds against mast cell degranulation was validated, ensuring their important roles in the anti-allergic activity of the plant. Notably, besides showing the anti-allergic activity of X. tridentata, this work highlights the role of metabolomic analysis in identifying and selectively isolating active metabolites from plants.
Collapse
Affiliation(s)
- Rinrada Suntivich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Worawat Songjang
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Arunya Jiraviriyakul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
5
|
Chen J, Li G, Sun C, Peng F, Yu L, Chen Y, Tan Y, Cao X, Tang Y, Xie X, Peng C. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother Res 2022; 36:1545-1575. [PMID: 35253930 DOI: 10.1002/ptr.7397] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Quercitrin is a naturally available type of flavonoid that commonly functions as the dietary ingredient and supplement. So far, a wide spectrum of bioactivities of quercitrin have been revealed, including antioxidative stress, antiinflammation, anti-microorganisms, immunomodulation, analgesia, wound healing, and vasodilation. Based on these various pharmacological activities, increasing studies have focused on the potency of quercitrin in diverse diseases in recent years, such as bone metabolic diseases, gastrointestinal diseases, cardiovascular and cerebrovascular diseases, and others. In this paper, by collecting and summarizing publications from the recent years, the natural sources, pharmacological activities and roles in various diseases, pharmacokinetics, structure-activity relationship, as well as the toxicity of quercitrin were systematically reviewed. In addition, the underlying molecular mechanisms of quercitrin in treating related diseases, the dose-effect relationships, and the novel preparations were discussed on the purpose of broadening the application prospect of quercitrin as functional food and providing reference for its clinical application. Notably, clinical studies of quercitrin are insufficient at present, further high-quality studies are needed to firmly establish the clinical efficacy of quercitrin.
Collapse
Affiliation(s)
- Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunli Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Borgo J, Laurella LC, Martini F, Catalán CAN, Sülsen VP. Stevia Genus: Phytochemistry and Biological Activities Update. Molecules 2021; 26:2733. [PMID: 34066562 PMCID: PMC8125113 DOI: 10.3390/molecules26092733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The Stevia genus (Asteraceae) comprises around 230 species, distributed from the southern United States to the South American Andean region. Stevia rebaudiana, a Paraguayan herb that produces an intensely sweet diterpene glycoside called stevioside, is the most relevant member of this genus. Apart from S. rebaudiana, many other species belonging to the Stevia genus are considered medicinal and have been popularly used to treat different ailments. The members from this genus produce sesquiterpene lactones, diterpenes, longipinanes, and flavonoids as the main types of phytochemicals. Many pharmacological activities have been described for Stevia extracts and isolated compounds, antioxidant, antiparasitic, antiviral, anti-inflammatory, and antiproliferative activities being the most frequently mentioned. This review aims to present an update of the Stevia genus covering ethnobotanical aspects and traditional uses, phytochemistry, and biological activities of the extracts and isolated compounds.
Collapse
Affiliation(s)
- Jimena Borgo
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Laura C. Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Florencia Martini
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Cesar A. N. Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 (T4000INI), San Miguel de Tucumán T4000, Argentina;
| | - Valeria P. Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|