1
|
Leung G, Junnila J, Björkenheim T, Tiainen H, Hyytiäinen HK. A prospective, randomised, controlled, double blinded, cross-over study on the effect of a single session of pulsed electromagnetic field therapy on signs of hip osteoarthritis in dogs. Acta Vet Scand 2024; 66:36. [PMID: 39061091 PMCID: PMC11282820 DOI: 10.1186/s13028-024-00754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Canine coxofemoral joint osteoarthritis is a common, painful and debilitating condition. The objective of this study was to evaluate if any measurable changes in pain or lameness occurred in this patient group immediately after a single treatment with pulsed electromagnetic field therapy. Eight dogs with coxofemoral joint osteoarthritis presenting with signs of pain and lameness were prospectively recruited to this randomised, controlled, double blinded, cross-over study. Subjects attended the research facility on two occasions for one active and one placebo treatment with pulsed electromagnetic field therapy. The immediate effect of one pulsed electromagnetic field therapy treatment on pain and lameness was measured subjectively with the Helsinki Chronic Pain Index and Visual Analogue Scale and objectively using a pressure sensitive walkway. RESULTS A statistically significant difference (P = 0.03) for change in stride length in the affected limb was recorded for subjects between the active and placebo treatments with pulsed electromagnetic field therapy. Within the active treatment results, there was a statistically significant change in the measurement for reach (P = 0.04) and stride length (P = 0.047) which got shorter in the affected limb post treatment. For the subjective outcome measures, there was no statistically significant difference between the active and placebo treatments for the evening of the treatment day or the next morning from pre-treatment values. Within the placebo treatment results a statistically significant change (improvement) was detected in Visual Analogue Score (P = 0.03) between pre-treatment and the next morning values. CONCLUSIONS The findings of this study do not show demonstrable improvement in owner assessed pain levels or temporospatial performance in dogs with coxofemoral joint osteoarthritis immediately after a single application of pulsed electromagnetic field therapy.
Collapse
Affiliation(s)
- Gillian Leung
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | | | - Thomas Björkenheim
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O.Box 57, 00014, Helsinki, Finland
| | - Helena Tiainen
- Veterinary Teaching Hospital, University of Helsinki, P.O.Box 57, 00014, Helsinki, Finland
| | - Heli Katariina Hyytiäinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O.Box 57, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Li Q, Liu H, Yin G, Xie Q. Efferocytosis: Current status and future prospects in the treatment of autoimmune diseases. Heliyon 2024; 10:e28399. [PMID: 38596091 PMCID: PMC11002059 DOI: 10.1016/j.heliyon.2024.e28399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Billions of apoptotic cells are swiftly removed from the human body daily. This clearance process is regulated by efferocytosis, an active anti-inflammatory process during which phagocytes engulf and remove apoptotic cells. However, impaired clearance of apoptotic cells is associated with the development of various autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease. In this review, we conducted a comprehensive search of relevant studies published from January 1, 2000, to the present, focusing on efferocytosis, autoimmune disease pathogenesis, regulatory mechanisms governing efferocytosis, and potential treatments targeting this process. Our review highlights the key molecules involved in different stages of efferocytosis-namely, the "find me," "eat me," and "engulf and digest" phases-while elucidating their relevance to autoimmune disease pathology. Furthermore, we explore the therapeutic potential of modulating efferocytosis to restore immune homeostasis and mitigate autoimmune responses. By providing theoretical underpinnings for the targeting of efferocytosis in the treatment of autoimmune diseases, this review contributes to the advancement of therapeutic strategies in this field.
Collapse
Affiliation(s)
- Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Su DB, Zhao ZX, Yin DC, Ye YJ. Promising application of pulsed electromagnetic fields on tissue repair and regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:36-50. [PMID: 38280492 DOI: 10.1016/j.pbiomolbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.
Collapse
Affiliation(s)
- Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
4
|
Díaz-Del Cerro E, De la Fuente M. Positive effects of pulsed electromagnetic fields on behavior, immune function, and oxidative and inflammatory state in old mice. Electromagn Biol Med 2023; 42:51-66. [PMID: 37585725 DOI: 10.1080/15368378.2023.2243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
The establishment of chronic oxidative and inflammatory stress with aging leads to the deterioration of the nervous and immune systems and, consequently, to the loss of health. The aim of this work was to study the effect of exposure to low-frequency pulsed electromagnetic fields (PEMFs) produced by the NEURALTER® system (15 min/day for 4 weeks) in the behavior, immune functions, and oxidative and inflammatory state of old mice. Female old CD1 mice were divided into three groups: control group, handling control group and Neuralter group. Then, behavioral tests were performed, and peritoneal leukocytes were extracted to analyze function, oxidative and inflammatory parameters. In peritoneal leukocytes from old mice, the effects in vitro of 15 min with NEURALTER® were studied on function and oxidative parameters. The results show that after this type of treatment, old mice had greater coordination and locomotion, better immune function, and an oxidative-inflammatory state. Similarly, the immune function and oxidative state of leukocytes showed an improvement when these cells were exposed directly to the NEURALTER® system. In conclusion, the exposure to low-frequency PEMFs produced by the NEURALTER® system has beneficial effects on health in aging. In addition, this effect is direct, at least in part, on immune cells.
Collapse
Affiliation(s)
- Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
- Institute of Investigation 12 de Octubre (i+12), Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
- Institute of Investigation 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
5
|
Fang XX, Zhai MN, Zhu M, He C, Wang H, Wang J, Zhang ZJ. Inflammation in pathogenesis of chronic pain: Foe and friend. Mol Pain 2023; 19:17448069231178176. [PMID: 37220667 DOI: 10.1177/17448069231178176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Chronic pain is a refractory health disease worldwide causing an enormous economic burden on individuals and society. Accumulating evidence suggests that inflammation in the peripheral nervous system (PNS) and central nervous system (CNS) is the major factor in the pathogenesis of chronic pain. The inflammation in the early- and late phase may have distinctive effects on the initiation and resolution of pain, which can be viewed as friend or foe. On the one hand, painful injuries lead to the activation of glial cells and immune cells in the PNS, releasing pro-inflammatory mediators, which contribute to the sensitization of nociceptors, leading to chronic pain; neuroinflammation in the CNS drives central sensitization and promotes the development of chronic pain. On the other hand, macrophages and glial cells of PNS and CNS promote pain resolution via anti-inflammatory mediators and specialized pro-resolving mediators (SPMs). In this review, we provide an overview of the current understanding of inflammation in the deterioration and resolution of pain. Further, we summarize a number of novel strategies that can be used to prevent and treat chronic pain by controlling inflammation. This comprehensive view of the relationship between inflammation and chronic pain and its specific mechanism will provide novel targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meng-Nan Zhai
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cheng He
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
6
|
Pulsed Electromagnetic Field Protects Against Brain Injury After Intracerebral Hemorrhage: Involvement of Anti-Inflammatory Processes and Hematoma Clearance via CD36. J Mol Neurosci 2022; 72:2150-2161. [PMID: 36048344 DOI: 10.1007/s12031-022-02063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Intracerebral hemorrhage causes high mortality and morbidity, but its therapy methods are limited. In the present study, pulsed electromagnetic field (PEMF) was demonstrated to have beneficial effects on an intracerebral hemorrhage (ICH) model. This study explored the effects and underlying mechanisms of PEMF in a mouse model of ICH and cultured BV2 cells. PEMF was applied 4 hours after collagenase-induced ICH at day 0 and 4 hours per day for seven consecutive days. The expression levels of proinflammatory factors were assessed by ELISA kits and western blotting. Hematoma volume was measured by histological analysis. The effects of PEMF on phagocytosis of the erythrocytes were observed in cultured BV2 cells and ICH mouse models. Seven days after ICH, the hematoma volume was significantly reduced in PEMF-treated animals compared to nontreated mice. We found that PEMF decreased the hematoma volume and the expression levels of proinflammatory factors after ICH. Moreover, PEMF enhanced the erythrophagocytosis of microglia via CD36. Furthermore, we found that downregulation CD36 with Genistein blocked the effects of PEMF-induced hematoma clearance and anti-inflammations effects. Thus, the PEMF-mediated promotion of neurological functions may at least partly involve anti-inflammatory processes and hematoma clearance. These results suggest that PEMF treatment promoted the hematoma clearance and alleviated the inflammation after ICH.
Collapse
|
7
|
Wang M, Li Y, Feng L, Zhang X, Wang H, Zhang N, Viohl I, Li G. Pulsed Electromagnetic Field Enhances Healing of a Meniscal Tear and Mitigates Posttraumatic Osteoarthritis in a Rat Model. Am J Sports Med 2022; 50:2722-2732. [PMID: 35834942 DOI: 10.1177/03635465221105874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscal tears in the avascular region are thought to rarely heal and are a considerable challenge to treat. Although the therapeutic effects of a pulsed electromagnetic field (PEMF) have been extensively studied in a variety of orthopaedic disorders, the effect of a PEMF on meniscal healing has not been reported. HYPOTHESIS PEMF treatment would promote meniscal healing and prevent osteoarthritis progression. STUDY DESIGN Controlled laboratory study. METHODS A total of 72 twelve-week-old male Sprague-Dawley rats with full-thickness longitudinal medial meniscal tears in the avascular region were divided into 3 groups: control (Gcon), treatment with a classic signal PEMF (Gclassic), and treatment with a high-slew rate signal PEMF (GHSR). Macroscopic observation and histological analysis of the meniscus and articular cartilage were performed to evaluate the meniscal healing and progression of osteoarthritis. The synovium was harvested for histological and immunofluorescent analysis to evaluate the intra-articular inflammation. Meniscal healing, articular cartilage degeneration, and synovitis were quantitatively evaluated according to their scoring systems. RESULTS Dramatic degenerative changes of the meniscus and articular cartilage were noticed during gross observation and histological evaluation in Gcon at 8 weeks. However, the menisci in the 2 treatment groups were restored to normal morphology, with a smooth surface and shiny white color. Particularly, the HSR signal remarkably enhanced the fibrochondrogenesis and accelerated the remodeling process of the regenerated tissue. The meniscal healing scores of the PEMF treatment groups were significantly higher than those in Gcon at 8 weeks. Specifically, the HSR signal showed a significantly higher meniscal repair score than did the classic signal at week 8 (P < .01). Additionally, the HSR signal significantly downregulated the secretion levels of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in the meniscus and synovium as compared with the control group. When compared with the 2 treatment groups, Gcon had significantly higher degeneration scores (Gcon vs Gclassic, P < .0001; Gcon vs GHSR, P < .0001). The HSR signal also exhibited significantly lower synovitis scores compared with the other two groups (Gcon vs Gclassic, P < .0001; Gclassic vs GHSR, P = .0002). CONCLUSION A PEMF promoted the healing of meniscal tears in the avascular region and restored the injured meniscus to its structural integrity in a rat model. As compared with the classic signal, the HSR signal showed increased capability to promote fibrocartilaginous tissue formation and modulate the inflammatory environment, therefore protecting the knee joint from posttraumatic osteoarthritis development. CLINICAL RELEVANCE Adjuvant PEMF therapy may offer a new approach for the treatment of meniscal tears attributed to the enhanced meniscal repair and ameliorated osteoarthritis progression.
Collapse
Affiliation(s)
- Ming Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yucong Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Lu Feng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiaoting Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Nianli Zhang
- Research and Clinical Affairs, Orthofix Medical Inc, Lewisville, Texas, USA
| | - Ingmar Viohl
- Research and Clinical Affairs, Orthofix Medical Inc, Lewisville, Texas, USA
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
8
|
Liu J, Huang X, Zhou J, Li L, Xiao H, Qu M, Sun Z. Pulsed electromagnetic field alleviates synovitis and inhibits the NLRP3/Caspase-1/GSDMD signaling pathway in osteoarthritis rats. Electromagn Biol Med 2022; 41:101-107. [PMID: 34994274 DOI: 10.1080/15368378.2021.2021933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022]
Abstract
Low-grade inflammation is a key mediator of the pathogenesis of Osteoarthritis (OA). Pulsed electromagnetic field (PEMF) can improve the symptoms of OA and potentially acts as an anti-inflammatory. The aim of this study was to investigate the effect of the PEMF on OA and its relationship with the NLRP3/Caspase-1/GSDMD signaling pathway.18 Three-month-old Sprague-Dawley (SD) rats were randomly divided into three groups (n = 6 per group): 1) OA group, 2) OA+PEMF group (OA with PEMF exposure), 3) Control group (sham operation with placebo PEMF). Rats in the OA and OA+PEMF groups were subjected to bilateral anterior cruciate ligament transection and ovariectomy. PEMF scheme: Pulse waveform, 3.82 mT, 8 Hz, 40 min/day, 5 days a week, for 12 weeks. The expression levels of NLRP3, Caspase-1, GSDMD, IL-1β, and MMP-13 were detected by qRT-PCR and Western blot. The pathological structures of OA were monitored with Safranin O/fast green staining and hematoxylin eosin staining. Our results showed that PEMF alleviated the degree of inflammation and degeneration of cartilage in rats with OA, based on the histopathological changes and decline of the expression of IL-1β and MMP-13. Moreover, the over-expression of NLRP3, Caspase-1, and GSDMD in the cartilage of the OA rats decreased after PEMF treatment. These results suggested that PEMF could be a highly promising noninvasive strategy to slow down the progression of OA and inhibition of the NLRP3/Caspase-1/GSDMD signaling pathway might be involved in the beneficial effect of PEMF.
Collapse
Affiliation(s)
- Jing Liu
- The First Affiliated Hospital, Rehabilitation Medicine Center,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiarong Huang
- The First Affiliated Hospital, Rehabilitation Medicine Center,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun Zhou
- The First Affiliated Hospital, Rehabilitation Medicine Center,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lan Li
- Department of Rehabilitation, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Hao Xiao
- Department of Rehabilitation, The First Hospital of Chang Sha, Changsha, Hunna, China
| | - Mengjian Qu
- The First Affiliated Hospital, Rehabilitation Medicine Center,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilu Sun
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
Weaver JS, Vina ER, Munk PL, Klauser AS, Elifritz JM, Taljanovic MS. Gouty Arthropathy: Review of Clinical Manifestations and Treatment, with Emphasis on Imaging. J Clin Med 2021; 11:jcm11010166. [PMID: 35011907 PMCID: PMC8745871 DOI: 10.3390/jcm11010166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 12/22/2022] Open
Abstract
Gout, a crystalline arthropathy caused by the deposition of monosodium urate crystals in the articular and periarticular soft tissues, is a frequent cause of painful arthropathy. Imaging has an important role in the initial evaluation as well as the treatment and follow up of gouty arthropathy. The imaging findings of gouty arthropathy on radiography, ultrasonography, computed tomography, dual energy computed tomography, and magnetic resonance imaging are described to include findings of the early, acute and chronic phases of gout. These findings include early monosodium urate deposits, osseous erosions, and tophi, which may involve periarticular tissues, tendons, and bursae. Treatment of gout includes non-steroidal anti-inflammatories, colchicine, glucocorticoids, interleukin-1 inhibitors, xanthine oxidase inhibitors, uricosuric drugs, and recombinant uricase. Imaging is critical in monitoring response to therapy; clinical management can be modulated based on imaging findings. This review article describes the current standard of care in imaging and treatment of gouty arthropathy.
Collapse
Affiliation(s)
- Jennifer S. Weaver
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, USA;
- Correspondence:
| | - Ernest R. Vina
- Department of Medicine, University of Arizona Arthritis Center, Tucson, AZ 85724, USA;
| | - Peter L. Munk
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Department of Radiology, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada
| | - Andrea S. Klauser
- Radiology Department, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| | - Jamie M. Elifritz
- Departments of Radiology and Pathology, University of New Mexico, Albuquerque, NM 87131, USA;
- New Mexico Office of the Medical Investigator, Albuquerque, NM 87131, USA
| | - Mihra S. Taljanovic
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, USA;
- Departments of Medical Imaging and Orthopaedic Surgery, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Vinhas A, Gonçalves AI, Rodrigues MT, Gomes ME. Human tendon-derived cell sheets created by magnetic force-based tissue engineering hold tenogenic and immunomodulatory potential. Acta Biomater 2021; 131:236-247. [PMID: 34192569 DOI: 10.1016/j.actbio.2021.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cell sheet technology and magnetic based tissue engineering hold the potential to become instrumental in developing magnetically responsive living tissues analogues that can be potentially used both for modeling and therapeutical purposes. Cell sheet constructions more closely recreate physiological niches, through the preservation of contiguous cells and cell-ECM interactions, which assist the cellular guidance in regenerative processes. We herein propose to use magnetically assisted cell sheets (magCSs) constructed with human tendon-derived cells (hTDCs) and magnetic nanoparticles to study inflammation activity upon magCSs exposure to IL-1β, anticipating its added value for tendon disease modeling. Our results show that IL-1β induces an inflammatory profile in magCSs, supporting its in vitro use to enlighten inflammation mediated events in tendon cells. Moreover, the response of magCSs to IL-1β is modulated by pulsed electromagnetic field (PEMF) stimulation, favoring the expression of anti-inflammatory genes, which seems to be associated to MAPK(ERK1/2) pathway. The anti-inflammatory response to PEMF together with the immunomodulatory potential of magCSs opens new perspectives for their applicability on tendon regeneration that goes beyond advanced cell based modeling. STATEMENT OF SIGNIFICANCE: The combination of cell sheets and magnetic-based technologies holds promise as instrumental bio-instructive tools both for tendon disease modelling and for the development of magnetically responsive living tendon substitutes. We have previously shown that remote actuation of a pulsed electromagnetic field (PEMF) modulated the inflammatory response of IL-1β-treated human tendon-derived cell (hTDCs) monolayers. As magnetic cell sheets (magCSs) technologies enable improved cellular organization and matrix deposition, these constructions could better recapitulate tendon niches. In this work, we aimed to apply magCSs technologies to study hTDCs responses in inflammatory environments. Overall results show that PEMF-stimulated-magCSs hold evidence for immunomodulatory properties and to become a living tendon model envisioning tendon regenerative therapies.
Collapse
Affiliation(s)
- Adriana Vinhas
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|