1
|
Kim BJ, Bak SB, Bae SJ, Jin HJ, Park SM, Kim YR, Jung DH, Song CH, Kim YW, Kim SC, Lee WY, Park SD. Protective Effects of Red Ginseng Against Tacrine-Induced Hepatotoxicity: An Integrated Approach with Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2024; 18:549-566. [PMID: 38419811 PMCID: PMC10900653 DOI: 10.2147/dddt.s450305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Tacrine, an FDA-approved acetylcholinesterase inhibitor, has shown efficacy in treating Alzheimer's disease, but its clinical use is limited by hepatotoxicity. This study investigates the protective effects of red ginseng against tacrine-induced hepatotoxicity, focusing on oxidative stress. Methods A network depicting the interaction between compounds and targets was constructed for RG. Effect of RG was determined by MTT and FACS analysis with cells stained by rhodamine 123. Proteins were extracted and subjected to immunoblotting for apoptosis-related proteins. Results The outcomes of the network analysis revealed a significant association, with 20 out of 82 identified primary RG targets aligning with those involved in oxidative liver damage including notable interactions within the AMPK pathway. in vitro experiments showed that RG, particularly at 1000μg/mL, mitigated tacrine-induced apoptosis and mitochondrial damage, while activating the LKB1-mediated AMPK pathway and Hippo-Yap signaling. In mice, RG also protected the liver injury induced by tacrine, as similar protective effects to silymarin, a well-known drug for liver toxicity protection. Discussion Our study reveals the potential of RG in mitigating tacrine-induced hepatotoxicity, suggesting the administration of natural products like RG to reduce toxicity in Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Bong-Jo Kim
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Seon-Been Bak
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Su-Jin Bae
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
- Department of Korean Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Hyo-Jung Jin
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Sang Mi Park
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Ye-Rim Kim
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Dae-Hwa Jung
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Chang-Hyun Song
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Young-Woo Kim
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Sang-Chan Kim
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Won-Yung Lee
- Department of Korean Medicine, Wonkwang University, Iksan, 54538, Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Sun-Dong Park
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| |
Collapse
|
2
|
Liang J, Li L, Li L, Zhou X, Zhang Z, Huang Y, Xiao X. Lipid metabolism reprogramming in head and neck cancer. Front Oncol 2023; 13:1271505. [PMID: 37927468 PMCID: PMC10622980 DOI: 10.3389/fonc.2023.1271505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Lipid metabolism reprogramming is one of the most prominent metabolic anomalies in cancer, wherein cancer cells undergo dysregulation of lipid metabolism to acquire adequate energy, cell membrane building blocks, as well as signaling molecules essential for cell proliferation, survival, invasion, and metastasis. These adaptations enable cancer cells to effectively respond to challenges posed by the tumor microenvironment, leading to cancer therapy resistance and poor cancer prognosis. Head and neck cancer, ranking as the seventh most prevalent cancer, exhibits numerous abnormalities in lipid metabolism. Nevertheless, the precise role of lipid metabolic rewiring in head and neck cancer remains unclear. In line with the LIPID MAPS Lipid Classification System and cancer risk factors, the present review delves into the dysregulated molecules and pathways participating in the process of lipid uptake, biosynthesis, transportation, and catabolism. We also present an overview of the latest advancements in understanding alterations in lipid metabolism and how they intersect with the carcinogenesis, development, treatment, and prognosis of head and neck cancer. By shedding light on the significance of metabolic therapy, we aspire to improve the overall prognosis and treatment outcomes of head and neck cancer patients.
Collapse
Affiliation(s)
- Jinfeng Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Limei Li
- Department of Pediatric Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
3
|
Nittayaboon K, Leetanaporn K, Sangkhathat S, Roytrakul S, Navakanitworakul R. Cytotoxic effect of metformin on butyrate-resistant PMF-K014 colorectal cancer spheroid cells. Biomed Pharmacother 2022; 151:113214. [PMID: 35676792 DOI: 10.1016/j.biopha.2022.113214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/01/2022] Open
Abstract
Three-dimensional (3D) cell culture models are used in cancer research because they mimic physiological responses in vivo compared with two-dimensional (2D) culture systems. Recently, cross-resistance of butyrate-resistant (BR) cells and chemoresistance in colorectal cancer (CRC) cells have been reported; however, effective treatments for BR cells have not been identified. In this study, we investigated the cytotoxicity of metformin (MET), an anti-diabetic drug, on BR CRC cells in a 3D spheroid culture model. The results demonstrate that MET decreases spheroid size, migration, and spheroid viability, while it increases spheroid death. The molecular mechanism revealed that AMP-activated protein kinase (AMPK) and Akt serine/threonine kinase 1(Akt) were significantly upregulated, whereas the acetyl-CoA-carboxylase (ACC) and mammalian target of rapamycin (mTOR) were downregulated, which led to caspase activation and apoptosis. Our findings show the potential cytotoxicity of MET on CRC-BR cells. The combination of MET and conventional chemotherapeutic drugs should be addressed in further studies to reduce the side effects of standard chemotherapy for CRC.
Collapse
Affiliation(s)
- Kesara Nittayaboon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Sittirak Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand.
| | - Raphatphorn Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
4
|
Wang Y, Yu W, Li S, Guo D, He J, Wang Y. Acetyl-CoA Carboxylases and Diseases. Front Oncol 2022; 12:836058. [PMID: 35359351 PMCID: PMC8963101 DOI: 10.3389/fonc.2022.836058] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-CoA to produce malonyl-CoA. In mammals, ACC1 and ACC2 are two members of ACCs. ACC1 localizes in the cytosol and acts as the first and rate-limiting enzyme in the de novo fatty acid synthesis pathway. ACC2 localizes on the outer membrane of mitochondria and produces malonyl-CoA to regulate the activity of carnitine palmitoyltransferase 1 (CPT1) that involves in the β-oxidation of fatty acid. Fatty acid synthesis is central in a myriad of physiological and pathological conditions. ACC1 is the major member of ACCs in mammalian, mountains of documents record the roles of ACC1 in various diseases, such as cancer, diabetes, obesity. Besides, acetyl-CoA and malonyl-CoA are cofactors in protein acetylation and malonylation, respectively, so that the manipulation of acetyl-CoA and malonyl-CoA by ACC1 can also markedly influence the profile of protein post-translational modifications, resulting in alternated biological processes in mammalian cells. In the review, we summarize our understandings of ACCs, including their structural features, regulatory mechanisms, and roles in diseases. ACC1 has emerged as a promising target for diseases treatment, so that the specific inhibitors of ACC1 for diseases treatment are also discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Weixing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Sha Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Dingyuan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Jie He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yugang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yugang Wang,
| |
Collapse
|