1
|
Ghavidel F, Amiri H, Tabrizi MH, Alidadi S, Hosseini H, Sahebkar A. The Combinational Effect of Inulin and Resveratrol on the Oxidative Stress and Inflammation Level in a Rat Model of Diabetic Nephropathy. Curr Dev Nutr 2024; 8:102059. [PMID: 38292928 PMCID: PMC10826146 DOI: 10.1016/j.cdnut.2023.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Background Using inulin can enhance resveratrol's effects by improving the intestinal microbiome and the stability of resveratrol. Objectives We aimed to investigate the effect of therapeutic intervention with combined inulin and resveratrol on kidney function in diabetic rats. Methods Diabetic model was induced by intraperitoneal injection of streptozotocin. Afterward, rats were divided into 6 groups: control, diabetic without treatment, diabetic treated with insulin, diabetic treated with resveratrol, diabetic treated with inulin, and diabetic treated with a combination of inulin and resveratrol. After 10 wk, the creatinine, urea, insulin, urinary proteins, and inflammatory and oxidative stress markers were evaluated. Pathologic changes were examined in kidney tissues. Results Renal dysfunction, accompanied by increased inflammation and oxidative stress, was observed. Our results showed that treatment with resveratrol and inulin had antidiabetic effects and was associated with reduced renal dysfunction, oxidative stress, and kidney inflammation. In addition, it was observed that combined treatment with inulin and resveratrol outperformed monotherapies in improving kidney function and reducing oxidative stress and inflammation. Conclusions Treatment with resveratrol and inulin can have renoprotective effects by improving oxidative stress and inflammation in kidney tissues. Therefore, employing these 2 compounds is suggested as an inexpensive and available method for diabetic nephropathy.
Collapse
Affiliation(s)
- Farideh Ghavidel
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Azizian H, Farhadi Z, Bader M, Alizadeh Ghalenoei J, Ghafari MA, Mahmoodzadeh S. GPER activation attenuates cardiac dysfunction by upregulating the SIRT1/3-AMPK-UCP2 pathway in postmenopausal diabetic rats. PLoS One 2023; 18:e0293630. [PMID: 38134189 PMCID: PMC10745199 DOI: 10.1371/journal.pone.0293630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2023] [Indexed: 12/24/2023] Open
Abstract
Postmenopausal diabetic women are at higher risk to develop cardiovascular diseases (CVD) compared with nondiabetic women. Alterations in cardiac cellular metabolism caused by changes in sirtuins are one of the main causes of CVD in postmenopausal diabetic women. Several studies have demonstrated the beneficial actions of the G protein-coupled estrogen receptor (GPER) in postmenopausal diabetic CVD. However, the molecular mechanisms by which GPER has a cardioprotective effect are still not well understood. In this study, we used an ovariectomized (OVX) type-two diabetic (T2D) rat model induced by high-fat diet/streptozotocin to investigate the effect of G-1 (GPER-agonist) on sirtuins, and their downstream pathways involved in regulation of cardiac metabolism and function. Animals were divided into five groups: Sham-Control, T2D, OVX+T2D, OVX+T2D+Vehicle, and OVX+T2D+G-1. G-1 was administrated for six weeks. At the end, hemodynamic factors were measured, and protein levels of sirtuins, AMP-activated protein kinase (AMPK), and uncoupling protein 2 (UCP2) were determined by Western blot analysis. In addition, cardiac levels of oxidative stress biomarkers were measured. The findings showed that T2D led to left ventricular dysfunction and signs of oxidative stress in the myocardium, which were accompanied by decreased protein levels of Sirt1/2/3/6, p-AMPK, and UCP2 in the heart. Moreover, the induction of the menopausal state exacerbated these changes. In contrast, treatment with G-1 ameliorated the hemodynamic changes associated with ovariectomy by increasing Sirt1/3, p-AMPK, UCP2, and improving oxidative status. The results provide evidence of the cardioprotective effects of GPER operating through Sirt1/3, p-AMPK, and UCP2, thereby improving cardiac function. Our results suggest that increasing Sirt1/3 levels may offer new therapeutic approaches for postmenopausal diabetic CVD.
Collapse
Affiliation(s)
- Hossein Azizian
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zeinab Farhadi
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
- University of Lübeck, Institute for Biology, Lübeck, Germany
| | - Jalil Alizadeh Ghalenoei
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Amin Ghafari
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokoufeh Mahmoodzadeh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
3
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
4
|
Chen Y, Guan W, Zhang N, Wang Y, Tian Y, Sun H, Li X, Wang Y, Liu J. <em>Lactobacillus plantarum</em> Lp2 improved LPS-induced liver injury through the TLR-4/MAPK/NFκB and Nrf2-HO-1/CYP2E1 pathways in mice. Food Nutr Res 2022; 66:5459. [PMID: 35903291 PMCID: PMC9287763 DOI: 10.29219/fnr.v66.5459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Inflammatory liver diseases present a significant public health problem. Probiotics are a kind of living microorganisms, which can improve the balance of host intestinal flora, promote the proliferation of intestinal beneficial bacteria, inhibit the growth of harmful bacteria, improve immunity, reduce blood lipids and so on. Probiotics in fermented foods have attracted considerable attention lately as treatment options for liver injury.
Objective: The aim of this study was selected probiotic strain with well probiotic properties from naturally fermented foods and investigated the underlying mechanisms of screened probiotic strain on lipopolysaccharide (LPS)-induced liver injury, which provided the theoretical foundation for the development of probiotics functional food.
Design: The probiotic characteristics of Lactobacillus plantarum Lp2 isolated from Chinese traditional fermented food were evaluated. Male KM mice were randomly assigned into three groups: normal chow (Control), LPS and LPS with L. plantarum Lp2. L. plantarum Lp2 were orally administered for 4 weeks before exposure to LPS. The liver injury of LPS-induced mice was observed through the evaluation of biochemical indexes, protein expression level and liver histopathology.
Results and discussions: After treatment for 4 weeks, L. plantarum Lp2 administration significantly reduced the LPS-induced liver coefficient and the levels of serum or liver aspartate transaminase (AST), alanine aminotransferase (ALT), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and LPS, as well as decreasing the histological alterations and protein compared with the LPS group. Western-blotting results showed that L. plantarum Lp2 activated the signal pathway of TLR4/MAPK/NFκB/NRF2-HO-1/CYP2E1/Caspase-3 and regulated the expression of related proteins.
Conclusions: In summary, L. plantarum Lp2 suppressed the LPS-induced activation of inflammatory pathways, oxidative injury and apoptosis has the potential to be used to improve liver injury.
Collapse
Affiliation(s)
- Yiying Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Wuyang Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Nan Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuan Tian
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Xia Li Tel: +86 0431 84533312; fax: +86 0431 84533312 E-mail:
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
- Xia Li Tel: +86 0431 84533312; fax: +86 0431 84533312 E-mail:
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
5
|
Guimarães JT, Almeida PP, Brito ML, Cruz BO, Costa NS, Almeida Ito RV, Mota JC, Bertolo MR, Morais ST, Neto RP, Tavares MIB, Souto F, Bogusz Junior S, Pimentel TC, Stockler-Pinto MB, Freitas MQ, Cruz AG. In vivo functional and health benefits of a prebiotic soursop whey beverage processed by high-intensity ultrasound: Study with healthy Wistar rats. Food Chem 2022; 380:132193. [DOI: 10.1016/j.foodchem.2022.132193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 12/31/2022]
|
6
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
7
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Abstract
Several studies have shown that probiotics and synbiotics ameliorate dyslipidemia. However, the molecular mechanisms mediating their effects remain to be determined. Therefore, we aimed to compare the effects of a probiotic, a prebiotic, and a synbiotic in dyslipidemic Sprague–Dawley rats, and explore the mechanisms involved using a proteomic approach. The rats were allocated to five groups: a control group that was fed normal chow, and four high-fat diet-fed groups, three of which were administered a probiotic (Lactobacillus acidophilus), a prebiotic (inulin), or a combination of the two (a synbiotic) for 30 days. We showed that the administration of inulin, and especially L. acidophilus, improved the lipid profile and reduced the serum concentrations of inflammatory markers in high-fat diet-fed rats. Proteomic analysis showed changes in lipid elongation, glycerolipid metabolism, activation of antioxidants, and a reduction in the activation of the mitogen-activated protein kinase signaling pathway in the livers of rats administered L. acidophilus, which likely mediate its beneficial effects on inflammation and dyslipidemia by reduced the levels of 18.56% CRP, 35.71% TNF-α 25.6% LDL-C and 28.57% LDL-C/HDL-C ratio when compared to HF group. L. acidophilus and inulin may represent effective natural means of maintaining inflammation and dyslipidemia.
Collapse
|
9
|
Rahimiyan-Heravan M, Roshangar L, Karimi P, Sefidgari-Abrasi S, Morshedi M, Saghafi-Asl M, Bavafa-Valenlia K. The potential therapeutic effects of Lactobacillus plantarum and inulin on serum and testicular reproductive markers in diabetic male rats. Diabetol Metab Syndr 2020; 12:53. [PMID: 32607132 PMCID: PMC7318432 DOI: 10.1186/s13098-020-00560-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND It is well established that diminished reproductive health is one of the notable long-term outcomes of type 2 diabetes mellitus (T2DM), especially among males. Due to the global increasing rate of T2DM and infertility, we aimed to investigate the impact of Lactobacillus plantarum (L. plantarum), inulin, and their combinatory supplementation on fertility markers as well as testicular kisspeptin and androgen receptor (AR)'s expression in diabetic male rats. METHODS Thirty-five Male Wistar rats with Streptozotocin-induced T2DM were supplemented with L. plantarum, inulin, or their combination for 8 weeks. At the end-point, the animals were sacrificed and serum, testicular, and seminal parameters were studied. RESULTS Administration of L. plantarum and inulin in diabetic male rats improved sperm motility and viability (P < 0.001, both) as well as testicular tissue development via increasing leydig cell number, testicular spermatid count, and diameter of seminiferous tubules (P < 0.001, all). Testicular expression of Kisspeptin was elevated by inulin supplementation (P = 0.01). L. plantarum administration increased testicular AR expression (P = 0.01). The expression of Kisspeptin showed a remarkable correlation with fertility markers (P < 0.001). CONCLUSION Supplementation with either L. plantarum, inulin, or their combination can prevent infertility caused by T2DM in male rats via improving testicular kisspeptin and AR expression, leydig cell count, and effectively increasing epididymal sperm motility and viability.
Collapse
Affiliation(s)
- Marziyeh Rahimiyan-Heravan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Sefidgari-Abrasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Morshedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | - Khadijeh Bavafa-Valenlia
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|