1
|
Bouza C, Losada AP, Fernández C, Álvarez-Dios JA, de Azevedo AM, Barreiro A, Costas D, Quiroga MI, Martínez P, Vázquez S. A comprehensive coding and microRNA transcriptome of vertebral bone in postlarvae and juveniles of Senegalese sole (Solea senegalensis). Genomics 2024; 116:110802. [PMID: 38290593 DOI: 10.1016/j.ygeno.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Understanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression. Here, we used RNA-seq of spinal samples to obtain the first comprehensive coding and miRNA transcriptomic repertoire for postlarval and juvenile vertebral bone, covering different vertebral phenotypes and egg-incubation temperatures related to skeleton health in S. senegalensis. Coding genes, miRNA and pathways regulating bone development and growth were identified. Differential transcriptomic profiles and suggestive mRNA-miRNA interactions were found between postlarvae and juveniles. Bone-related genes and functions were associated with the extracellular matrix, development and regulatory processes, calcium binding, retinol and lipid metabolism or response to stimulus, including those revealed by the miRNA targets related to signaling, cellular and metabolic processes, growth, cell proliferation and biological adhesion. Pathway enrichment associated with fish skeleton were identified when comparing postlarvae and juveniles: growth and bone development functions in postlarvae, while actin cytoskeleton, focal adhesion and proteasome related to bone remodeling in juveniles. The transcriptome data disclosed candidate coding and miRNA gene markers related to bone cell processes, references for functional studies of the anosteocytic bone of S. senegalensis. This study establishes a broad transcriptomic foundation to study healthy and anomalous spines under early thermal conditions across life-stages in S. senegalensis, and for comparative analysis of skeleton homeostasis and pathology in fish and vertebrates.
Collapse
Affiliation(s)
- Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Ana P Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José A Álvarez-Dios
- Department of Applied Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana Manuela de Azevedo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Barreiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, Vigo 36331, Spain
| | - María Isabel Quiroga
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Sonia Vázquez
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
2
|
Hussain MS, Shaikh NK, Agrawal M, Tufail M, Bisht AS, Khurana N, Kumar R. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding. Pathol Res Pract 2024; 255:155186. [PMID: 38350169 DOI: 10.1016/j.prp.2024.155186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Osteomyelitis, a debilitating bone infection, presents considerable clinical challenges due to its intricate etiology and limited treatment options. Despite strides in surgical and chemotherapeutic interventions, the treatment landscape for osteomyelitis remains unsatisfactory. Recent attention has focused on the role of non-coding RNAs (ncRNAs) in the pathogenesis and progression of osteomyelitis. This review consolidates current knowledge on the involvement of distinct classes of ncRNAs, including microRNAs, long ncRNAs, and circular RNAs, in the context of osteomyelitis. Emerging evidence from various studies underscores the potential of ncRNAs in orchestrating gene expression and influencing the differentiation of osteoblasts and osteoclasts, pivotal processes in bone formation. The review initiates by elucidating the regulatory functions of ncRNAs in fundamental cellular processes such as inflammation, immune response, and bone remodeling, pivotal in osteomyelitis pathology. It delves into the intricate network of interactions between ncRNAs and their target genes, illuminating how dysregulation contributes to the establishment and persistence of osteomyelitic infections. Understanding their regulatory roles may pave the way for targeted diagnostic tools and innovative therapeutic interventions, promising a paradigm shift in the clinical approach to this challenging condition. Additionally, we delve into the promising therapeutic applications of these molecules, envisioning novel diagnostic and treatment approaches to enhance the management of this challenging bone infection.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210 Gujarat, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Qi L, Jiang W, He W, Li X, Wu J, Chen S, Liao Z, Yu S, Liu J, Sun Y, Wu Q, Dong C, Wang Q. Transcriptome profile analysis in spinal cord injury rats with transplantation of menstrual blood-derived stem cells. Front Mol Neurosci 2024; 17:1335404. [PMID: 38361743 PMCID: PMC10867146 DOI: 10.3389/fnmol.2024.1335404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Menstrual blood-derived stem cells (MenSCs) are vital in treating many degenerative and traumatic disorders. However, the underlying molecular mechanisms remain obscure in MenSCs-treating spinal cord injury (SCI) rats. Methods MenSCs were adopted into the injured sites of rat spinal cords at day 7 post surgery and the tissues were harvested for total RNA sequencing analysis at day 21 after surgery to investigate the expression patterns of RNAs. The differentially expressed genes (DEGs) were analyzed with volcano and heatmap plot. DEGs were sequentially analyzed by weighted gene co-expression network, functional enrichment, and competitive endogenous RNAs (ceRNA) network analysis. Next, expression of selected miRNAs, lncRNAs, circRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics packages and extra databases were enrolled to scoop the genes functions and their interaction relationships. Results A total of 89 lncRNAs, 65 circRNAs, 120 miRNAs and 422 mRNAs were significantly upregulated and 65 lncRNAs, 72 circRNAs, 74 miRNAs, and 190 mRNAs were significantly downregulated in the MenSCs treated rats compared to SCI ones. Current investigation revealed that MenSCs treatment improve the recovery of the injured rats and the most significantly involved pathways in SCI regeneration were cell adhesion molecules, nature killer cell mediated cytotoxicity, primary immunodeficiency, chemokine signaling pathway, T cell receptor signaling pathway and B cell receptor signaling pathway. Moreover, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA network of SCI was constructed. Finally, the protein-protein interaction (PPI) network was constructed using the top 100 DE mRNAs. The constructed PPI network included 47 nodes and 70 edges. Discussion In summary, the above results revealed the expression profile and potential functions of differentially expressed (DE) RNAs in the injured spinal cords of rats in the MenSCs-treated and SCI groups, and this study may provide new clues to understand the mechanisms of MenSCs in treating SCI.
Collapse
Affiliation(s)
- Longju Qi
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wenwei Jiang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Wenhua He
- Department of Basic Medicine, Luohe Medical College, Luohe, Henan, China
| | - Xiangzhe Li
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Jiahuan Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shiyuan Chen
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zehua Liao
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shumin Yu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jinyi Liu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuyu Sun
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinfeng Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Chuanming Dong
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Qinghua Wang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Zheng Y, Wang X, Pan Y, Shi X, Yang L, Lou Y. Orientin suppresses osteoclastogenesis and ameliorates ovariectomy-induced osteoporosis via suppressing ROS production. Food Sci Nutr 2023; 11:5582-5595. [PMID: 37701239 PMCID: PMC10494641 DOI: 10.1002/fsn3.3516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
The aberrant differentiation of osteoclasts is a key feature of the pathogenesis of osteoporosis, which has a devastating impact on human health. While the effects of Orientin (Ori) on osteoporosis, particularly on RANKL-stimulated osteoclast production and activation, remain still unclear, Ori has been found to display several biological activities, including antioxidant and anti-inflammatory. In this work, we investigated the possible pathways through which Ori suppressed RANKL-induced osteoclast development and showed for the first time that it does so. The macrophages from the bone marrow (BMMs) were cultivated and then treated with Ori after being stimulated with RANKL. Then, TRAP-positive multinucleated cells were counted, and F-actin ring analysis was used to assess Ori's impact on mature osteoclast development. In addition, dihydroethidium (DHE) staining was used to evaluate the impact of Ori on RANKL-induced reactive oxygen species (ROS). In addition, we performed western blotting and quantitative RT-PCR analysis to investigate probable causes of these downregulation effects. We discovered that Ori inhibits the creation of osteoclasts, the gene and protein expressions unique to osteoclasts, and the ROS production. By activating Nrf2 and other ROS-scavenging enzymes, Ori reduces intracellular ROS levels. The expression of the main transcription factor of osteoclast development, c-Fos, was downregulated together with NFATc1, CTSK, and NFATc2, thanks to Ori's inhibition of RANKL-induced NF-κB. Consistent with its in vitro antiosteoclastogenic action, Ori therapy in the ovariectomized (OVX) rat model was also able to restore bone mass and improve microarchitecture in the distal femurs. Together, our results demonstrate that Ori is a flavonoid molecule with therapeutic promise for bone illnesses associated with osteoclasts, such as osteoporosis.
Collapse
Affiliation(s)
- Yan Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
- Department of EndocrinologyAffiliated Yueqing HospitalWenzhouChina
| | - Xing Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Ya‐Jing Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Xiao‐Feng Shi
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Lei Yang
- Department of OrthopedicThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yong‐Liang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
5
|
Ge SY, Tan YF, Wang ZN, Sun CY, Zhang Y. opplncRNA: A MATLAB Package for Comprehensive Pathway Analysis of lncRNA-miRNA-mRNA in Humans. Appl Biochem Biotechnol 2022; 194:5644-5654. [PMID: 35802238 DOI: 10.1007/s12010-022-04025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Abstract
The discovery of new lncRNAs (long noncoding RNAs) and their regulatory pathways has always been a hotspot in the field of ceRNA (competing endogenous RNA). Herein, we report opplncRNA (Omics Pilot Platform of lncRNA), a novel and rapid tool for investigating lncRNA-miRNA-mRNA interactions based on the architecture of MATLAB AppDesigner. opplncRNA is useful to analyze the regulatory interaction networks of lncRNA with a friendly GUI (graphical user interface). There are three lncRNA databases (ENCORI, LncBase, and miRcode) about lncRNA-miRNA interactions that have been integrated into opplncRNA, as well as seven miRNA databases (miRcode, ENCORI, TarBase, miRTarBase, miRDB, miRanda, and miRecords) about miRNA-mRNA interactions as also. opplncRNA can read expression data from any profile techniques, such as microarray or RNA-seq. Then, the relationships between lncRNA-miRNA and miRNA-mRNA can be directly calculated through the profile data of lncRNA, miRNA, and mRNA by the threshold of correlation coefficients. Integrated databases can be used to filter calculation outcomes to obtain more reliable pathways. Moreover, opplncRNA has the functionality of directly demonstrating 3 layers network from lncRNA to mRNA in command line form.
Collapse
Affiliation(s)
- Sheng-Yang Ge
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yi-Fan Tan
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ze-Ning Wang
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chuan-Yu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Yang Zhang
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
6
|
Wang L, Liang C, Lin X, Liu C, Li J. microRNA-491-5p regulates osteogenic differentiation of bone marrow stem cells in type 2 diabetes. Oral Dis 2021; 29:308-321. [PMID: 34618998 DOI: 10.1111/odi.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Osseointegration of oral implants has a low success rate in patients with type 2 diabetes. This is because of the inhibition of osteogenic differentiation in the jawbone marrow mesenchymal stem cells, in which the expression of microRNA(miR)-491-5p is significantly downregulated, as ascertained through gene chip screening. However, the underlying mechanisms are unclear. Here, we aimed to clarify the mechanisms involved in the influence of miR-491-5p on osteogenic differentiation. SUBJECTS AND METHODS Jawbone marrow mesenchymal stem cells were isolated from jawbones of patients with type 2 diabetes and subjected to bioinformatics and functional analyses. Osteogenesis experiments were conducted using the isolated cells and an in vivo model. RESULTS Knockdown and overexpression experiments revealed the positive effects of miR-491-5p expression on osteogenic differentiation in vivo and in vitro. Additionally, a dual-luciferase assay revealed that miR-491-5p targeted the SMAD/RUNX2 pathway by inhibiting the expression of epidermal growth factor receptor. CONCLUSIONS miR-491-5p is vital in osteogenic differentiation of jawbone mesenchymal stem cells; its downregulation in type 2 diabetes could be a major cause of decreased osteogenic differentiation. Regulation of miR-491-5p expression could improve osteogenic differentiation of jawbone mesenchymal stem cells in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Chao Liang
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Changying Liu
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Jun Li
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China.,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
De Martinis M, Ginaldi L, Allegra A, Sirufo MM, Pioggia G, Tonacci A, Gangemi S. The Osteoporosis/Microbiota Linkage: The Role of miRNA. Int J Mol Sci 2020; 21:E8887. [PMID: 33255179 PMCID: PMC7727697 DOI: 10.3390/ijms21238887] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hundreds of trillions of bacteria are present in the human body in a mutually beneficial symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota contribute to the determinism of various diseases. Recent research suggests that the microbiota is also involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to modern molecular biotechnology, various mechanisms regulating the relationship between bone and microbiota are emerging. Understanding the role of microbiota imbalances in the development of osteoporosis is essential for the development of potential osteoporosis prevention and treatment strategies through microbiota targeting. A relevant complementary mechanism could be also constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs). miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review, we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset by governing miRNA production. An improved comprehension of the relations between microbiota and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis, and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|