1
|
Zhang D, Dong X, Li X, Yang Y, Li H, Hong Y, Yang G, Kong X, Wang X, Ma X. Moxibustion ameliorates chronic inflammatory visceral pain via spinal circRNA-miRNA-mRNA networks: a central mechanism study. Mol Brain 2024; 17:23. [PMID: 38750560 PMCID: PMC11097453 DOI: 10.1186/s13041-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
This study aimed to unveil the central mechanism of moxibustion treating chronic inflammatory visceral pain (CIVP) from the angle of circRNA-miRNA-mRNA networks in the spinal cord. The rat CIVP model was established using a mixture of 5% (w/v) 2,4,6-trinitrobenzene sulfonic acid and 50% ethanol at a volume ratio of 2:1 via enema. Rats in the moxibustion group received herb-partitioned moxibustion at Tianshu (ST25, bilateral) and Qihai (CV6) points. The abdominal withdrawal reflex (AWR), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were adopted for pain behavior observation and pain sensitivity assessment. The circRNA, miRNA, and mRNA expression profiles were detected using the high-throughput sequencing technique. Relevant databases and bioinformatics analysis methods were used to screen for differentially expressed (DE) RNAs and build a circRNA-miRNA-mRNA (competing endogenous RNA) ceRNA regulatory network. The real-time quantitative PCR was employed to verify the sequencing result. CIVP rat models had a significantly higher AWR and lower TWL and MWT than normal rats. Between normal and model rats, there were 103 DE-circRNAs, 16 DE-miRNAs, and 397 DE-mRNAs in the spinal cord. Compared with the model group, the moxibustion group had a lower AWR and higher TWL and MWT; between these two groups, there were 118 DE-circRNAs, 15 DE-miRNAs, and 804 DE-mRNAs in the spinal cord. Two ceRNA networks were chosen to be verified. As a result, moxibustion's analgesic effect on visceral pain in CIVP rats may be associated with regulating the circRNA_02767/rno-miR-483-3p/Gfap network in the spinal cord and improving central sensitization.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiaoqing Dong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of Acupuncture and Moxibustion, Xi'an Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Shaanxi, 710032, China
| | - Xiaoying Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yanting Yang
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Hongna Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue Hong
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Guang Yang
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiehe Kong
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xuejun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Xiaopeng Ma
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
2
|
Huo M, Zhang Q, Si Y, Zhang Y, Chang H, Zhou M, Zhang D, Fang Y. The role of purinergic signaling in acupuncture-mediated relief of neuropathic and inflammatory pain. Purinergic Signal 2024:10.1007/s11302-024-09985-y. [PMID: 38305986 DOI: 10.1007/s11302-024-09985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Acupuncture is a traditional medicinal practice in China that has been increasingly recognized in other countries in recent decades. Notably, several reports have demonstrated that acupuncture can effectively aid in pain management. However, the analgesic mechanisms through which acupuncture provides such benefits remain poorly understood. Purinergic signaling, which is mediated by purine nucleotides and purinergic receptors, has been proposed to play a central role in acupuncture analgesia. On the one hand, acupuncture affects the transmission of nociception by increasing adenosine triphosphate dephosphorylation and thereby decreasing downstream P2X3, P2X4, and P2X7 receptors signaling activity, regulating the levels of inflammatory factors, neurotrophic factors, and synapsin I. On the other hand, acupuncture exerts analgesic effects by promoting the production of adenosine, enhancing the expression of downstream adenosine A1 and A2A receptors, and regulating downstream inflammatory factors or synaptic plasticity. Together, this systematic overview of the field provides a sound, evidence-based foundation for future research focused on the application of acupuncture as a means of relieving pain.
Collapse
Affiliation(s)
- Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Haihe Laboratory of Modern Chinese, Tianjin, 301617, People's Republic of China.
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
3
|
Huang H, Li Y, Wang X, Zhang Q, Zhao J, Wang Q. Electroacupuncture pretreatment protects against anesthesia/surgery-induced cognitive decline by activating CREB via the ERK/MAPK pathway in the hippocampal CA1 region in aged rats. Aging (Albany NY) 2023; 15:11227-11243. [PMID: 37857016 PMCID: PMC10637818 DOI: 10.18632/aging.205124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Effective preventive measures against postoperative cognitive dysfunction in older adults are urgently needed. In this study, we investigated the effect of electroacupuncture (EA) on anesthesia and surgery-induced cognitive decline in aged rats by RNA-seq analysis, behavioral testing, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay and western blot analysis. EA ameliorated anesthesia and surgery induced-cognitive decline. RNA-seq analysis identified numerous differentially-expressed genes, including 353 upregulated genes and 563 downregulated genes, after pretreatment with EA in aged rats with postoperative cognitive dysfunction. To examine the role of CREB in EA, we injected adeno-associated virus (AAV) into the CA1 region of the hippocampus bilaterally into the aged rats to downregulate the transcription factor. EA improved synaptic plasticity, structurally and functionally, by activating the MAPK/ERK/CREB signaling pathway in aged rats. Together, our findings suggest that EA protects against anesthesia and surgery-induced cognitive decline in aged rats by activating the MAPK/ERK/CREB signaling pathway and enhancing hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Hongjie Huang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Xupeng Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Qi Zhang
- Department of Anesthesiology, Hebei Children’s Hospital Affiliated to Hebei Medical University, Hebei 050031, China
| | - Juan Zhao
- Experimental Teaching Center, Hebei Medical University, Hebei 050011, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| |
Collapse
|
4
|
Yang Y, Wang J, Zhang C, Guo Y, Zhao M, Zhang M, Li Z, Gao F, Luo Y, Wang Y, Cao J, Du M, Wang Y, Lin X, Xu Z. The efficacy and neural mechanism of acupuncture therapy in the treatment of visceral hypersensitivity in irritable bowel syndrome. Front Neurosci 2023; 17:1251470. [PMID: 37732301 PMCID: PMC10507180 DOI: 10.3389/fnins.2023.1251470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Irritable Bowel Syndrome (IBS) is a complex functional gastrointestinal disorder primarily characterized by chronic abdominal pain, bloating, and altered bowel habits. Chronic abdominal pain caused by visceral Hypersensitivity (VH) is the main reason why patients with IBS seek medication. Significant research effort has been devoted to the efficacy of acupuncture as a non-drug alternative therapy for visceral-hyperalgesia-induced IBS. Herein, we examined the central and peripheral analgesic mechanisms of acupuncture in IBS treatment. Acupuncture can improve inflammation and relieve pain by reducing 5-hydroxytryptamine and 5-HT3A receptor expression and increasing 5-HT4 receptor expression in peripheral intestinal sensory endings. Moreover, acupuncture can also activate the transient receptor potential vanillin 1 channel, block the activity of intestinal glial cells, and reduce the secretion of local pain-related neurotransmitters, thereby weakening peripheral sensitization. Moreover, by inhibiting the activation of N-methyl-D-aspartate receptor ion channels in the dorsal horn of the spinal cord and anterior cingulate cortex or releasing opioids, acupuncture can block excessive stimulation of abnormal pain signals in the brain and spinal cord. It can also stimulate glial cells (through the P2X7 and prokinetic protein pathways) to block VH pain perception and cognition. Furthermore, acupuncture can regulate the emotional components of IBS by targeting hypothalamic-pituitary-adrenal axis-related hormones and neurotransmitters via relevant brain nuclei, hence improving the IBS-induced VH response. These findings provide a scientific basis for acupuncture as an effective clinical adjuvant therapy for IBS pain.
Collapse
Affiliation(s)
- Yuanzhen Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaqi Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoyang Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Meidan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongzheng Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feifei Gao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Luo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiru Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyi Cao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingfang Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzhe Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Lu Y, Chai Y, Qiu J, Zhang J, Wu M, Fu Z, Wang Y, Qin C. Integrated omics analysis reveals the epigenetic mechanism of visceral hypersensitivity in IBS-D. Front Pharmacol 2023; 14:1062630. [PMID: 37007011 PMCID: PMC10064328 DOI: 10.3389/fphar.2023.1062630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Background and objective: IBS-D is a common functional bowel disease with complex etiology and without biomarker. The pathological and physiological basis of IBS-D focuses on visceral hypersensitivity. However, its epigenetic mechanism remains elusive. Our study aimed to integrate the relationship between differentially expressed miRNAs, mRNAs and proteins in IBS-D patients in order to reveal epigenetic mechanism of visceral hypersensitivity from transcription and protein levels and provide the molecular basis for discovering biomarkers of IBS-D.Methods: The intestinal biopsies from IBS-D patients and healthy volunteers were obtained for high-throughput sequencing of miRNAs and mRNAs. The differential miRNAs were selected and verified by q-PCR experiment followed by target mRNA prediction. Biological functions were respectively analyzed for target mRNAs, differential mRNAs and the previously identified differential proteins in order to explore the characteristic involved visceral hypersensitivity. At last, interaction analysis of miRNAs, mRNAs and proteins was performed for the epigenetic regulation mechanism from transcription and protein levels.Results: Thirty-three miRNAs were found to be differentially expressed in IBS-D and five of them were further confirmed, including upregulated hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p and downregulated hsa-miR-219a-5p, hsa-miR-19b-1-5p. In addition, 3,812 differential mRNAs were identified. Thirty intersecting molecules were found from the analysis on the target mRNAs of miRNAs and mRNAs. Fourteen intersecting molecules were obtained from the analysis on the target mRNAs and proteins, and thirty-six intersecting molecules were identified from analysis on the proteins and different mRNAs. According to the integrated analysis of miRNA-mRNA-protein, we noticed two new molecules COPS2 regulated by hsa-miR-19b-1-5p and MARCKS regulated by hsa-miR-641. Meanwhile some critical signaling pathways in IBS-D were found such as MAPK, GABAergic synapse, Glutamatergic synapse, and Adherens junction.Conclusion: The expressions of hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p, hsa-miR-219a-5p, and hsa-miR-19b-1-5p in the intestinal tissues of IBS-D patients were significantly different. Moreover, they could regulate a variety of molecules and signaling pathways, which were involved in the multifaceted and multilevel mechanism of visceral hypersensitivity of IBS-D.
Collapse
Affiliation(s)
- Yaoyao Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuna Chai
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Jianli Qiu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingmin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Menglin Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Fu
- Department of General Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongfu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Chongzhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| |
Collapse
|
6
|
Functional Implications and Clinical Potential of MicroRNAs in Irritable Bowel Syndrome: A Concise Review. Dig Dis Sci 2023; 68:38-53. [PMID: 35507132 PMCID: PMC9066399 DOI: 10.1007/s10620-022-07516-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
MicroRNAs (miRNAs) are tiny (20-24 nucleotides long), non-coding, highly conserved RNA molecules that play a crucial role within the post-transcriptional regulation of gene expression via sequence-specific mechanisms. Since the miRNA transcriptome is involved in multiple molecular processes needed for cellular homeostasis, its altered expression can trigger the development and progression of several human pathologies. In this context, over the last few years, several relevant studies have demonstrated that dysregulated miRNAs affect a wide range of molecular mechanisms associated with irritable bowel syndrome (IBS), a common gastrointestinal disorder. For instance, abnormal miRNA expression in IBS patients is related to the alteration of intestinal permeability, visceral hyperalgesia, inflammatory pathways, and pain sensitivity. Besides, specific miRNAs are differentially expressed in the different subtypes of IBS, and therefore, they might be used as biomarkers for precise diagnosis of these pathological conditions. Accordingly, miRNAs have noteworthy potential as theragnostic targets for IBS. Hence, in this current review, we present an overview of the recent discoveries regarding the clinical relevance of miRNAs in IBS, which might be useful in the future for the development of miRNA-based drugs against this disorder.
Collapse
|
7
|
Argôlo IDPR, Parisi JR, Silva JRTD, Silva MLD. Participation of Potential Transient Receptors in the Antinociceptive Effect of Pharmacopuncture. J Acupunct Meridian Stud 2022; 15:105-113. [DOI: 10.51507/j.jams.2022.15.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 12/04/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Julia Risso Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | | |
Collapse
|
8
|
Long JY, Wang XJ, Li XY, Kong XH, Yang G, Zhang D, Yang YT, Shi Z, Ma XP. Spinal Microglia and Astrocytes: Two Key Players in Chronic Visceral Pain Pathogenesis. Neurochem Res 2022; 47:545-551. [PMID: 34797501 DOI: 10.1007/s11064-021-03486-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Chronic visceral pain (CVP) is one of the common symptoms of many diseases triggered by underlying diseases of the internal organs of the human body. Its causes include vascular mechanisms, mechanical factors, persistent inflammation, and unexplained functional mechanisms. Although the pathogenesis is unclear, more and more research has begun to shift from the neuronal aspect to the glial cells in recent years. Some data highlight that the spinal glial cells, particularly the microglia and astrocytes, play an essential role in CVP. Based on this, we highlight the mechanisms of microglia and astrocytes in CVP concerning the release of cytokines, chemokines, and neuroactive substances and alterations in intracellular signaling pathways during the process. Finally, because CVP is widespread in various diseases, we present future perspectives targeting microglia and astrocytes for treatment.
Collapse
Affiliation(s)
- Jun-Yi Long
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Xue-Jun Wang
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Xiao-Ying Li
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Xie-He Kong
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Yan-Ting Yang
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Zheng Shi
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Xiao-Peng Ma
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China.
| |
Collapse
|
9
|
Guo J, Chen L, Wang YH, Song YF, Zhao ZH, Zhao TT, Lin ZY, Gu DM, Liu YQ, Peng YJ, Pei LX, Sun JH. Electroacupuncture Attenuates Post-Inflammatory IBS-Associated Visceral and Somatic Hypersensitivity and Correlates With the Regulatory Mechanism of Epac1-Piezo2 Axis. Front Endocrinol (Lausanne) 2022; 13:918652. [PMID: 35865309 PMCID: PMC9294163 DOI: 10.3389/fendo.2022.918652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Electroacupuncture (EA) is considered to have a therapeutic effect in the relief of irritable bowel syndrome (IBS)-associated visceral hypersensitivity via the reduction of the level of 5-hydroxytryptamine (5-HT) and 5-HT3 receptors (5-HT3R). However, whether Epac1/Piezo2, as the upstream of 5-HT, is involved in this process remains unclear. We investigated whether EA at the ST36 and ST37 acupoints alleviated visceral and somatic hypersensitivity in a post-inflammatory IBS (PI-IBS) model mice via the Epac1-Piezo2 axis. In this study, we used 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced PI-IBS as a mouse model. Visceral sensitivity was assessed by the abdominal withdrawal reflex test. Somatic sensitivity was evaluated by the hind paw withdrawal threshold. Quantitative real-time PCR, immunofluorescence staining, ELISA, and Western blotting were performed to examine the expressions of Epac1, Piezo2, 5-HT, and 5-HT3R from the mouse distal colon/L5-S2 dorsal root ganglia (DRG). Our results showed that EA improved the increased visceral sensation and peripheral mechanical hyperalgesia in PI-IBS model mice, and the effects of EA were superior to the sham EA. EA significantly decreased the protein and mRNA levels of Epac1 and Piezo2, and reduced 5-HT and 5-HT3R expressions in the distal colon. Knockdown of colonic Piezo2 eliminated the effect of EA on somatic hypersensitivity. Combined knockdown of colonic Epac1 and Piezo2 synergized with EA in relieving visceral hypersensitivity and blocked the effect of EA on somatic hypersensitivity. Additionally, protein levels of Epac1 and Piezo2 were also found to be decreased in the L5-S2 DRGs after EA treatment. Taken together, our study suggested that EA at ST36 and ST37 can alleviate visceral and somatic hypersensitivity in PI-IBS model mice, which is closely related to the regulation of the Epac1-Piezo2 axis.
Collapse
Affiliation(s)
- Jing Guo
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-hang Wang
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ya-fang Song
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhan-hao Zhao
- Department of Massage, Danyang Hospital of Traditional Chinese Medicine, Danyang, China
| | - Ting-ting Zhao
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-ying Lin
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong-mei Gu
- Department of Acupuncture, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Yun-qi Liu
- Nanjing Foreign Language School, Nanjing, China
| | - Yong-jun Peng
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yong-jun Peng, ; Li-xia Pei, ; Jian-hua Sun,
| | - Li-xia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yong-jun Peng, ; Li-xia Pei, ; Jian-hua Sun,
| | - Jian-hua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yong-jun Peng, ; Li-xia Pei, ; Jian-hua Sun,
| |
Collapse
|
10
|
Zhang C, Li D. Effects of Electroacupuncture on Alleviating Prostatodynia and Inflammation in Rats with Chronic Nonbacterial Prostatitis. J Pain Res 2021; 14:2757-2765. [PMID: 34522134 PMCID: PMC8434923 DOI: 10.2147/jpr.s321119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Chronic prostatitis (CP) is a common urinary disease characterized by a complex sequence of symptoms including prostatodynia, which results in significant physical pain and mental burden to affected patients. Currently, CP has no standard treatment. Thus, physical therapy electroacupuncture (EA) which has been successful in treating several inflammation-related pain conditions was used to determine its effect on rats with CP. Materials and Methods Rats were castrated and treated with beta-estradiol for 28 days for CP modeling, and EA was initiated one week after. Following three weeks of treatment, pain-related behavioral testing, mechanical withdrawal threshold, and potential histopathological mechanisms were examined. Results EA treatment produced a significant antinociceptive effect, effectively increasing the pain threshold of CP rats, and the biochemical results revealed significantly lowered prostatic specific antigen levels. Histopathological results also demonstrated that EA exerted protective properties on prostate morphological changes, as well as decreased inflammation cytokines and oxidative stress molecular expressions in prostate tissue. Furthermore, EA alleviated microglial and astrocyte activation in the dorsal horn of the spinal cord, decreasing CXC motif ligand 1 expressions in activated spinal astrocytes. Conclusion In conclusion, it was demonstrated that EA alleviated CP-induced pain, which was partly achieved by the downregulation of inflammation, oxidative stress, and spinal cord glial activation.
Collapse
Affiliation(s)
- Chao Zhang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ding Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Zhan MX, Tang L, Lu YF, Wu HH, Guo ZB, Shi ZM, Yang CL, Zou YQ, Yang F, Chen GZ. Ulinastatin Exhibits Antinociception in Rat Models of Acute Somatic and Visceral Pain Through Inhibiting the Local and Central Inflammation. J Pain Res 2021; 14:1201-1214. [PMID: 33976570 PMCID: PMC8106509 DOI: 10.2147/jpr.s303595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Ulinastatin, a broad-spectrum serine protease inhibitor, has been widely used to treat various diseases clinically. However, so far, the antinociceptive effect of ulinastatin remains less studied experimentally and the underlying mechanisms of ulinastatin for pain relief remain unclear. This study aimed to find evidence of the analgesic effect of ulinastatin on acute somatic and visceral pain. Methods The analgesic effect of ulinastatin on acute somatic and visceral pain was evaluated by using formalin and acetic acid-induced writhing test. The analgesic mechanism of ulinastatin was verified by detecting the peripheral inflammatory cell infiltration and spinal glial activation with hematoxylin-eosin (H&E) and immunohistochemistry staining. Results We found that both of intraperitoneal (i.p.) pre-administration and post-administration of ulinastatin could reduce the total number of flinching and the licking duration following intraplantar formalin injection in a dose-related manner. However, the inhibitory effect of ulinastatin existed only in the second phase (Phase 2) of formalin-induced spontaneous pain response, with no effect in the first phase (Phase 1). The formalin-induced edema and ulcer were also improved by i.p. administration of ulinastatin. Moreover, i.p. administration of ulinastatin was also able to delay the occurrence of acetic acid-induced writhing and reduced the total number of writhes dose-dependently. We further demonstrated that ulinastatin significantly decreased the local inflammatory cell infiltration in injured paw and peritoneum tissue under formalin and acetic acid test separately. The microglial and astrocytic activation in the spinal dorsal horn induced by intraplantar formalin and i.p. acetic acid injection were also dramatically inhibited by i.p. administration of ulinastatin. Conclusion Our results for the first time provided a new line of evidence showing that ulinastatin could attenuate acute somatic and visceral pain by inhibiting the peripheral and spinal inflammatory reaction.
Collapse
Affiliation(s)
- Mei-Xiang Zhan
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Li Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yun-Fei Lu
- Department of Anesthesiology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Huang-Hui Wu
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Zhi-Bin Guo
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Zhong-Mou Shi
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Chen-Long Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China.,Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Guo-Zhong Chen
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| |
Collapse
|
12
|
Abstract
The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.
Collapse
Affiliation(s)
- Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
He JR, Yu SG, Tang Y, Illes P. Purinergic signaling as a basis of acupuncture-induced analgesia. Purinergic Signal 2020; 16:297-304. [PMID: 32577957 PMCID: PMC7524941 DOI: 10.1007/s11302-020-09708-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
This review summarizes experimental evidence indicating that purinergic mechanisms are causally involved in acupuncture (AP)-induced analgesia. Electroacupuncture (EAP) and manual AP release at pain-relevant acupoints ATP which may activate purinergic P2X receptors (Rs) especially of the P2X3 type situated at local sensory nerve endings (peripheral terminals of dorsal root ganglion [DRG] neurons); the central processes of these neurons are thought to inhibit via collaterals of ascending dorsal horn spinal cord neurons, pain-relevant pathways projecting to higher centers of the brain. In addition, during AP/EAP non-neuronal P2X4 and/or P2X7Rs localized at microglial cells of the CNS become activated at the spinal or supraspinal levels. In consequence, these microglia secrete bioactive compounds such as growth factors, cytokines, chemokines, reactive oxygen, and nitrogen species, which modulate the ascending neuronal pathways conducting painful stimuli. Alternatively, ATP released at acupoints by AP/EAP may be enzymatically degraded to adenosine, stimulating in loco presynaptic A1Rs exerting an inhibitory influence on the primary afferent fibers (the above mentioned pain-sensing peripheral terminals of DRG neurons) which thereby fail to conduct action potentials to the spinal cord dorsal horn. The net effect of the stimulation of P2X3, P2X4, P2X7, and A1Rs by the AP/EAP-induced release of ATP/adenosine at certain acupoints will be analgesia.
Collapse
Affiliation(s)
- Jin-Rong He
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China. .,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|