1
|
Rearte TA, Celis-Pla PSM, Abdala-Díaz R, Castro-Varela P, Marsili SN, García C, Cerón-García MC, Figueroa FL. Increase in polyunsaturated fatty acids and carotenoid accumulation in the microalga Golenkinia brevispicula (Chlorophyceae) by manipulating spectral irradiance and salinity. Biotechnol Bioeng 2024; 121:3715-3727. [PMID: 39183489 DOI: 10.1002/bit.28831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Microalgal biotechnology offers a promising platform for the sustainable production of diverse renewable bioactive compounds. The key distinction from other microbial bioprocesses lies in the critical role that light plays in cultures, as it serves as a source of environmental information to control metabolic processes. Therefore, we can use these criteria to design a bioprocess that aims to stimulate the accumulation of target molecules by controlling light exposure. We study the effect on biochemical and photobiological responses of Golenkinia brevispicula FAUBA-3 to the exposition of different spectral irradiances (specifically, high-fluence PAR of narrow yellow spectrum complemented with low intensity of monochromatic radiations of red, blue, and UV-A) under prestress and salinity stress conditions. High light (HL) intensity coupled to salinity stress affected the photosynthetic activity and photoprotection mechanisms as shown by maximal quantum yield (Fv/Fm) and non-photochemical quenching (NPQmax) reduction, respectively. HL treatments combined with the proper dose of UV-A radiation under salinity stress induced the highest carotenoid content (2.75 mg g dry weight [DW]- 1) composed mainly of lutein and β-carotene, and the highest lipid accumulation (35.3% DW) with the highest polyunsaturated fatty acid content (alpha-linolenic acid (C18:3) and linoleic acid (C18:2)). Our study can guide the strategies for commercial indoor production of G. brevispicula for high-value metabolites.
Collapse
Affiliation(s)
- T A Rearte
- Cátedra de Química Inorgánica y Analítica, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, CABA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - P S M Celis-Pla
- Laboratory of Aquatic Environmental Research (LACER)/HUB-AMBIENTAL UPLA, Playa Ancha University, Valparaíso, Chile
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - R Abdala-Díaz
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Málaga, Spain
| | - P Castro-Varela
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - S N Marsili
- Cátedra de Química Inorgánica y Analítica, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, CABA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - C García
- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M C Cerón-García
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - F L Figueroa
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Málaga, Spain
| |
Collapse
|
2
|
Jin Y, Li Y, Qi Y, Wei Q, Yang G, Ma X. A modified cultivation strategy to enhance biomass production and lipid accumulation of Tetradesmus obliquus FACHB-14 with copper stress and light quality induction. BIORESOURCE TECHNOLOGY 2024; 400:130677. [PMID: 38588782 DOI: 10.1016/j.biortech.2024.130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
In this study, a two-stage culture strategy was refined to concurrently enhance the growth and lipid accumulation of Tetradesmus obliquus. The results unveiled that, during the initial stage, the optimal conditions for biomass accumulation were achieved with 0.02 mg·L-1 Cu2+ concentration and red light. Under these conditions, biomass accumulation reached 0.628 g·L-1, marking a substantial 23.62 % increase compared to the control group. In the second stage, the optimal conditions for lipid accumulation were identified as 0.5 mg·L-1 Cu2+ concentration and red light, achieving 64.25 mg·g-1·d-1 and marking a 128.38 % increase over the control. Furthermore, the fatty acid analysis results revealed an 18.85 % increase in the saturated fatty acid content, indicating enhanced combustion performance of microalgae cultivated under the dual stress of red light and 0.5 mg·L-1 Cu2+. This study offers insights into the potential application of Tetradesmus obliquus in biofuel production.
Collapse
Affiliation(s)
- Yuanrong Jin
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yinting Li
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yingying Qi
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Gairen Yang
- Forestry College of Guangxi University, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, No. 100 Daxue Road, Nanning 530004, PR China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning 530004, PR China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, PR China.
| |
Collapse
|
3
|
Chen S, Li X, Ma X, Qing R, Chen Y, Zhou H, Yu Y, Li J, Tan Z. Lighting the way to sustainable development: Physiological response and light control strategy in microalgae-based wastewater treatment under illumination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166298. [PMID: 37591393 DOI: 10.1016/j.scitotenv.2023.166298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/29/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
The Sustainable Development Goals link pollutant control with carbon dioxide reduction. Toward the goal of pollutant and carbon reduction, microalgae-based wastewater treatment (MBWT), which can simultaneously remove pollutants and convert carbon dioxide into biomass with value-added metabolites, has attracted considerable attention. The photosynthetic organism microalgae and the photobioreactor are the functional body and the operational carrier of the MBWT system, respectively; thus, light conditions profoundly influence its performance. Therefore, this review takes the general rules of how light influences the performance of MBWT systems as a starting point to elaborate the light-influenced mechanisms in microalgae and the light control strategies for photobioreactors from the inside out. Wavelength, light intensity and photoperiod solely or interactively affect biomass accumulation, pollutant removal, and value-added metabolite production in MBWT. Physiological processes, including photosynthesis, photooxidative damage, light-regulated gene expression, and nutrient uptake, essentially explain the performance influence of MBWT and are instructive for specific microalgal strain improvement strategies. In addition, light causes unique reactions in MBWT systems as it interacts with components such as photooxidative damage enhancers present in types of wastewater. In order to provide guidance for photobioreactor design and light control in a large-scale MBWT system, wavelength transformation, light transmission, light source distribution, and light-dark cycle should be considered in addition to adjusting the light source characteristics. Finally, based on current research vacancies and challenges, future research orientation should focus on the improvement of microalgae and photobioreactor, as well as the integration of both.
Collapse
Affiliation(s)
- Shangxian Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xinlei Ma
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Renwei Qing
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yadan Yu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junjie Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Seawater with Added Monosodium Glutamate Residue (MSGR) Is a Promising Medium for the Cultivation of Two Commercial Marine Microalgae. WATER 2022. [DOI: 10.3390/w14060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Phaeodactylum tricornutum and Nannochloropsis oceanica, with their satisfactory performance in accumulating lipids and other high-value products, have been successfully used for commercial production in recent years. However, costly chemicals in culture media greatly increase the price of the resulting bioproducts. To control the cultivation cost, this paper assessed the potential of seawater supplemented with monosodium glutamate residue wastewater at a ratio of 1/500 (S-MSGR) to serve as a growing medium for these two marine species. Compared with the standard chemical culture medium, Erdschreiber’s medium (EM), both the algal growth and metabolite accumulation of P. tricornutum and N. oceanica were greatly promoted in S-MSGR. The maximum biomass concentrations of P. tricornutum and N. oceanica reached 0.93 and 0.36 g/L, which were, respectively, 1.5 and 1.9 times higher than those in EM medium. For lipid accumulation, P. tricornutum exhibited an excellent lipid productivity of 22.9 mg/L/day in S-MSGR, a 64% increase compared to EM medium. Furthermore, the average yield coefficients indicated good performance of P. tricornutum and N. oceanica in transferring the nitrogen in S-MSGR to the biomass, at 74.8 and 174.8 mg/g of nitrogen. In addition, compared with EM, the costs of the medium for lipid production of P. tricornutum and N. oceanica cultured in S-MSGR were USD 2.3 and 5.8/(kg lipid), which saved 96.9% and 97.6%, respectively. Therefore, this paper demonstrates that S-MSGR is a suitable nutrient resource for P. tricornutum and N. oceanica, and it has a great potential to cut the cultivation cost during real commercial production.
Collapse
|
5
|
Arcila JS, Céspedes D, Buitrón G. Influence of wavelength photoperiods and N/P ratio on wastewater treatment with microalgae-bacteria. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:712-724. [PMID: 34388129 DOI: 10.2166/wst.2021.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This research investigates the effect of mixing wavelength light photoperiods (12 h blue, 8 h blue: 4 h green, 4 h blue: 8 h green, and 12 h green) and N/P ratios (1.3 to 8.3) on the growth microalgae-bacteria systems, organic matter, and nutrient removals. The highest microalgae-bacteria growth performance (μ = 0.2 d-1, 481.1 ± 15.3 mg DW L-1) was observed when a 8 h blue: 4 h green mixed wavelength and a low N/P ratio were used. For both N/P ratios, biomass productivity was favored when using the blue light dominated at longer time periods. Mechanisms for nitrogen removal by assimilation depend on the N/P ratio, achieving assimilation between 49 and 65% at a low N/P ratio. High nitrogen removal (>50%) showed a strong relation with alkalinity culture conditions (pH > 8.5). The mixing of wavelength photoperiods seems to be a promising strategy to achieve high biomass productivity and nutrient removal. However, for optimal conditions, N/P ratios in the wastewater should be considered.
Collapse
Affiliation(s)
- Juan S Arcila
- Research Group on Technological and Environmental Development (GIDTA), Universidad Católica de Manizales, Carrera 23 No 60-63, Manizales, Caldas, Colombia
| | - Daniela Céspedes
- Research Group on Technological and Environmental Development (GIDTA), Universidad Católica de Manizales, Carrera 23 No 60-63, Manizales, Caldas, Colombia; Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, México
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, México
| |
Collapse
|