1
|
Handiru VS, Suviseshamuthu ES, Saleh S, Su H, Yue G, Allexandre D. Identifying neural correlates of balance impairment in traumatic brain injury using partial least squares correlation analysis. J Neural Eng 2024; 21:056012. [PMID: 39178907 DOI: 10.1088/1741-2552/ad7320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective.Balance impairment is one of the most debilitating consequences of traumatic brain injury (TBI). To study the neurophysiological underpinnings of balance impairment, the brain functional connectivity during perturbation tasks can provide new insights. To better characterize the association between the task-relevant functional connectivity and the degree of balance deficits in TBI, the analysis needs to be performed on the data stratified based on the balance impairment. However, such stratification is not straightforward, and it warrants a data-driven approach.Approach.We conducted a study to assess the balance control using a computerized posturography platform in 17 individuals with TBI and 15 age-matched healthy controls. We stratified the TBI participants into balance-impaired and non-impaired TBI usingk-means clustering of either center of pressure (COP) displacement during a balance perturbation task or Berg Balance Scale score as a functional outcome measure. We analyzed brain functional connectivity using the imaginary part of coherence across different cortical regions in various frequency bands. These connectivity features are then studied using the mean-centered partial least squares correlation analysis, which is a multivariate statistical framework with the advantage of handling more features than the number of samples, thus making it suitable for a small-sample study.Main results.Based on the nonparametric significance testing using permutation and bootstrap procedure, we noticed that the weakened theta-band connectivity strength in the following regions of interest significantly contributed to distinguishing balance impaired from non-impaired population, regardless of the type of stratification:left middle frontal gyrus, right paracentral lobule, precuneus, andbilateral middle occipital gyri. Significance.Identifying neural regions linked to balance impairment enhances our understanding of TBI-related balance dysfunction and could inform new treatment strategies. Future work will explore the impact of balance platform training on sensorimotor and visuomotor connectivity.
Collapse
Affiliation(s)
- Vikram Shenoy Handiru
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | - Easter Selvan Suviseshamuthu
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | - Soha Saleh
- Department of Physical Medicine and Rehabilitation, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, Newark, NJ 07107, United States of America
- Department of Neurology, Rutgers University, Newark, NJ 07101, United States of America
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Haiyan Su
- School of Computing, Montclair State University, Montclair, NJ, United States of America
| | - Guang Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | | |
Collapse
|
2
|
Everitt A, Richards H, Song Y, Smith J, Kobylarz E, Lukovits T, Halter R, Murphy E. EEG electrode localization with 3D iPhone scanning using point-cloud electrode selection (PC-ES). J Neural Eng 2023; 20:066033. [PMID: 38055968 DOI: 10.1088/1741-2552/ad12db] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Objective.Electroencephalography source imaging (ESI) is a valuable tool in clinical evaluation for epilepsy patients but is underutilized in part due to sensitivity to anatomical modeling errors. Accurate localization of scalp electrodes is instrumental to ESI, but existing localization devices are expensive and not portable. As a result, electrode localization challenges further impede access to ESI, particularly in inpatient and intensive care settings.Approach.To address this challenge, we present a portable and affordable electrode digitization method using the 3D scanning feature in modern iPhone models. This technique combines iPhone scanning with semi-automated image processing using point-cloud electrode selection (PC-ES), a custom MATLAB desktop application. We compare iPhone electrode localization to state-of-the-art photogrammetry technology in a human study with over 6000 electrodes labeled using each method. We also characterize the performance of PC-ES with respect to head location and examine the relative impact of different algorithm parameters.Main Results.The median electrode position variation across reviewers was 1.50 mm for PC-ES scanning and 0.53 mm for photogrammetry, and the average median distance between PC-ES and photogrammetry electrodes was 3.4 mm. These metrics demonstrate comparable performance of iPhone/PC-ES scanning to currently available technology and sufficient accuracy for ESI.Significance.Low cost, portable electrode localization using iPhone scanning removes barriers to ESI in inpatient, outpatient, and remote care settings. While PC-ES has current limitations in user bias and processing time, we anticipate these will improve with software automation techniques as well as future developments in iPhone 3D scanning technology.
Collapse
Affiliation(s)
- Alicia Everitt
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Haley Richards
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Yinchen Song
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
| | - Joel Smith
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Erik Kobylarz
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
| | - Timothy Lukovits
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - Ryan Halter
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
| | - Ethan Murphy
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| |
Collapse
|
3
|
Barborica A, Mindruta I, López-Madrona VJ, Alario FX, Trébuchon A, Donos C, Oane I, Pistol C, Mihai F, Bénar CG. Studying memory processes at different levels with simultaneous depth and surface EEG recordings. Front Hum Neurosci 2023; 17:1154038. [PMID: 37082152 PMCID: PMC10110965 DOI: 10.3389/fnhum.2023.1154038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Investigating cognitive brain functions using non-invasive electrophysiology can be challenging due to the particularities of the task-related EEG activity, the depth of the activated brain areas, and the extent of the networks involved. Stereoelectroencephalographic (SEEG) investigations in patients with drug-resistant epilepsy offer an extraordinary opportunity to validate information derived from non-invasive recordings at macro-scales. The SEEG approach can provide brain activity with high spatial specificity during tasks that target specific cognitive processes (e.g., memory). Full validation is possible only when performing simultaneous scalp SEEG recordings, which allows recording signals in the exact same brain state. This is the approach we have taken in 12 subjects performing a visual memory task that requires the recognition of previously viewed objects. The intracranial signals on 965 contact pairs have been compared to 391 simultaneously recorded scalp signals at a regional and whole-brain level, using multivariate pattern analysis. The results show that the task conditions are best captured by intracranial sensors, despite the limited spatial coverage of SEEG electrodes, compared to the whole-brain non-invasive recordings. Applying beamformer source reconstruction or independent component analysis does not result in an improvement of the multivariate task decoding performance using surface sensor data. By analyzing a joint scalp and SEEG dataset, we investigated whether the two types of signals carry complementary information that might improve the machine-learning classifier performance. This joint analysis revealed that the results are driven by the modality exhibiting best individual performance, namely SEEG.
Collapse
Affiliation(s)
- Andrei Barborica
- Department of Physics, University of Bucharest, Bucharest, Romania
- *Correspondence: Andrei Barborica
| | - Ioana Mindruta
- Epilepsy Monitoring Unit, Department of Neurology, Emergency University Hospital Bucharest, Bucharest, Romania
- Department of Neurology, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| | | | | | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | - Cristian Donos
- Department of Physics, University of Bucharest, Bucharest, Romania
| | - Irina Oane
- Epilepsy Monitoring Unit, Department of Neurology, Emergency University Hospital Bucharest, Bucharest, Romania
| | | | - Felicia Mihai
- Department of Physics, University of Bucharest, Bucharest, Romania
| | - Christian G. Bénar
- Aix Marseille University, INSERM, INS, Institute of Neuroscience System, Marseille, France
- Christian G. Bénar
| |
Collapse
|
4
|
Hatlestad-Hall C, Bruña R, Liljeström M, Renvall H, Heuser K, Taubøll E, Maestú F, Haraldsen IH. Reliable evaluation of functional connectivity and graph theory measures in source-level EEG: How many electrodes are enough? Clin Neurophysiol 2023; 150:1-16. [PMID: 36972647 DOI: 10.1016/j.clinph.2023.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Using EEG to characterise functional brain networks through graph theory has gained significant interest in clinical and basic research. However, the minimal requirements for reliable measures remain largely unaddressed. Here, we examined functional connectivity estimates and graph theory metrics obtained from EEG with varying electrode densities. METHODS EEG was recorded with 128 electrodes in 33 participants. The high-density EEG data were subsequently subsampled into three sparser montages (64, 32, and 19 electrodes). Four inverse solutions, four measures of functional connectivity, and five graph theory metrics were tested. RESULTS The correlation between the results obtained with 128-electrode and the subsampled montages decreased as a function of the number of electrodes. As a result of decreased electrode density, the network metrics became skewed: mean network strength and clustering coefficient were overestimated, while characteristic path length was underestimated. CONCLUSIONS Several graph theory metrics were altered when electrode density was reduced. Our results suggest that, for optimal balance between resource demand and result precision, a minimum of 64 electrodes should be utilised when graph theory metrics are used to characterise functional brain networks in source-reconstructed EEG data. SIGNIFICANCE Characterisation of functional brain networks derived from low-density EEG warrants careful consideration.
Collapse
Affiliation(s)
| | - Ricardo Bruña
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain; Department of Radiology, Universidad Complutense de Madrid, Madrid, Spain
| | - Mia Liljeström
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland; BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki, Finland
| | - Hanna Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland; BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki, Finland
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Fernando Maestú
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain; Department of Experimental Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Spain
| | - Ira H Haraldsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway; BrainSymph AS, Oslo, Norway
| |
Collapse
|
5
|
McLeod GA, Abbasian P, Toutant D, Ghassemi A, Duke T, Rycyk C, Serletis D, Moussavi Z, Ng MC. Sleep-wake states change the interictal localization of candidate epileptic source generators. Sleep 2022; 45:6547903. [PMID: 35279715 PMCID: PMC9189983 DOI: 10.1093/sleep/zsac062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 02/28/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES To compare estimated epileptic source localizations from 5 sleep-wake states (SWS): wakefulness (W), rapid eye movement sleep (REM), and non-REM 1-3. METHODS Electrical source localization (sLORETA) of interictal spikes from different SWS on surface EEG from the epilepsy monitoring unit at spike peak and take-off, with results mapped to individual brain models for 75% of patients. Concordance was defined as source localization voxels shared between 2 and 5 SWS, and discordance as those unique to 1 SWS against 1-4 other SWS. RESULTS 563 spikes from 16 prospectively recruited focal epilepsy patients across 161 day-nights. SWS exerted significant differences at spike peak but not take-off. Source localization size did not vary between SWS. REM localizations were smaller in multifocal than unifocal patients (28.8% vs. 54.4%, p = .0091). All five SWS contributed about 45% of their localizations to converge onto 17.0 ± 15.5% voxels. Against any one other SWS, REM was least concordant (54.4% vs. 66.9%, p = .0006) and most discordant (39.3% vs. 29.6%, p = .0008). REM also yielded the most unique localizations (20.0% vs. 8.6%, p = .0059). CONCLUSIONS REM was best suited to identify candidate epileptic sources. sLORETA proposes a model in which an "omni-concordant core" of source localizations shared by all five SWS is surrounded by a "penumbra" of source localizations shared by some but not all SWS. Uniquely, REM spares this core to "move" source voxels from the penumbra to unique cortex not localized by other SWS. This may reflect differential intra-spike propagation in REM, which may account for its reported superior localizing abilities.
Collapse
Affiliation(s)
- Graham A McLeod
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Parandoush Abbasian
- Medical Physics, Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada.,CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Darion Toutant
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | | | - Tyler Duke
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Conrad Rycyk
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Demitre Serletis
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Zahra Moussavi
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Marcus C Ng
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Taberna GA, Samogin J, Marino M, Mantini D. Detection of Resting-State Functional Connectivity from High-Density Electroencephalography Data: Impact of Head Modeling Strategies. Brain Sci 2021; 11:brainsci11060741. [PMID: 34204868 PMCID: PMC8226780 DOI: 10.3390/brainsci11060741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Recent technological advances have been permitted to use high-density electroencephalography (hdEEG) for the estimation of functional connectivity and the mapping of resting-state networks (RSNs). The reliable estimate of activity and connectivity from hdEEG data relies on the creation of an accurate head model, defining how neural currents propagate from the cortex to the sensors placed over the scalp. To the best of our knowledge, no study has been conducted yet to systematically test to what extent head modeling accuracy impacts on EEG-RSN reconstruction. To address this question, we used 256-channel hdEEG data collected in a group of young healthy participants at rest. We first estimated functional connectivity in EEG-RSNs by means of band-limited power envelope correlations, using neural activity estimated with an optimized analysis workflow. Then, we defined a series of head models with different levels of complexity, specifically testing the effect of different electrode positioning techniques and head tissue segmentation methods. We observed that robust EEG-RSNs can be obtained using a realistic head model, and that inaccuracies due to head tissue segmentation impact on RSN reconstruction more than those due to electrode positioning. Additionally, we found that EEG-RSN robustness to head model variations had space and frequency specificity. Overall, our results may contribute to defining a benchmark for assessing the reliability of hdEEG functional connectivity measures.
Collapse
Affiliation(s)
- Gaia Amaranta Taberna
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
| | - Jessica Samogin
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
| | - Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
- Correspondence: ; Tel.: +32-16-37-29-09
| |
Collapse
|