1
|
Su Y, Feng Y, Lin X, Ma C, Wei J. Genetic association study of TERT gene variants with chronic kidney disease susceptibility in the Chinese population. Ren Fail 2024; 46:2300725. [PMID: 38197421 PMCID: PMC10783823 DOI: 10.1080/0886022x.2023.2300725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
The incidence and mortality of chronic kidney disease (CKD) are increasing globally. Studies have demonstrated the significance of genetic risk factors in the progression of CKD. Telomerase reverse transcriptase (TERT) may be implicated in the development of CKD. This study aimed to investigate the correlation between TERT gene variants and susceptibility to CKD in the Chinese population. A total of 507 patients with CKD and 510 healthy controls were recruited for this case-control study. Four candidate loci were identified using the MassARRAY platform. Logistic regression analysis was employed to assess the association between TERT gene variants and the risk of CKD. The false positive reporting probability (FPRP) method was utilized to evaluate the validity of statistically significant associations. The multifactorial dimensionality reduction (MDR) method was used to evaluate the interaction between SNPs and the risk of CKD. Furthermore, discrepancies in the clinical features of subjects with diverse genotypes were evaluated using one-way analysis of variance (ANOVA). Our findings revealed a correlation between rs2735940 and rs4635969 and an increased risk of CKD. Stratification analysis indicated that rs4635969 was related to an increased risk of CKD in different subgroups (age ≤ 50 years and male). MDR analysis indicated that the two-site model (rs2735940 and rs4635969) was the best prediction model. Furthermore, the rs2735940 GG genotype was found to be linked to an increased level of microalbuminuria (MAU) in patients with CKD. Our study is the first to reveal a connection between TERT gene variants and susceptibility to CKD, providing new insights into the field of nephrology.
Collapse
Affiliation(s)
- Yan Su
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PRChina
| | - Yuan Feng
- Department of Immunology, the Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Xinran Lin
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PRChina
- Department of Nephrology, the First Affiliated Hospital of Hainan Medical College, Haikou, PR China
| | - Chunyang Ma
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical College, Haikou, PR China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PRChina
| |
Collapse
|
2
|
Ting KH, Yang PJ, Tsai PY, Lee CY, Yang SF. Correlations between the long noncoding RNA MEG3 and clinical characteristics for diabetic kidney disease in type 2 diabetes mellitus. Diabetol Metab Syndr 2024; 16:260. [PMID: 39487551 PMCID: PMC11531157 DOI: 10.1186/s13098-024-01502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND AND AIMS Diabetic kidney disease (DKD) is a common complication of type 2 diabetes mellitus (T2DM) that leads to systemic inflammation. Maternally expressed gene 3 (MEG3) is a tumor suppressor that is involved in inflammation regulation. The current study investigated the association between DKD and the prevalence of the single-nucleotide polymorphisms (SNPs) of MEG3. METHODS A total of 706 and 735 patients were included in the DKD and non-DKD groups, respectively. The five SNPs of MEG3, namely rs4081134 (G/A), rs10144253 (T/C), rs7158663 (G/A), rs3087918 (T/G), and rs11160608 (A/C), were genotyped using TaqMan allelic discrimination. RESULTS Our results revealed that, in the DKD group, the distribution of the GG genotype of the MEG3 SNP rs3087918 was significantly lower than that of the wild-type genotype (AOR: 0.703, 95% CI: 0.506-0.975, P = 0.035). In addition, in the pre-ESRD DKD subgroup, the distribution of the TG + GG genotype of the MEG3 SNP rs3087918 was significantly lower than that of the wild-type genotype (AOR: 0.637, 95% CI: 0.421-0.962, P = 0.032). In addition, among men in the DKD subgroup, the distribution of the GG genotype of the MEG3 SNP rs3087918 was significantly lower than that of the wild-type genotype (AOR: 0.630, 95% CI: 0.401-0.990, P = 0.045). Glycated hemoglobin (HbA1c) level was significantly higher in all T2DM patients with the wild-type genotype of the MEG3 SNP rs3087918 (P = 0.020). In addition, HbA1c levels were significantly higher in male patients and male DKD patients with the wild-type genotype of the MEG3 SNP rs3087918 (P = 0.032 and 0.031, respectively). CONCLUSION MEG3 SNP rs3087918 is significantly less prevalent in patients with DKD, and the SNP rs3087918 of MEG3 is associated with lower HbA1c levels.
Collapse
Affiliation(s)
- Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Yunlin Branch, Changhua Christian Hospital, Yunlin, Taiwan
- Department of Nursing, Hungkuang University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Jen Yang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Yu Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Yi Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Nobel Eye Institute, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Song J, Zhuang Y, Pan X, Chen Y, Xie F. Variants in PPARD- GLP1R are related to diabetic kidney disease in Chinese Han patients with type 2 diabetes mellitus. Heliyon 2024; 10:e35289. [PMID: 39161836 PMCID: PMC11332863 DOI: 10.1016/j.heliyon.2024.e35289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Genetic susceptibility is an important pathogenic mechanism in diabetic kidney disease (DKD). Our previous studies have identified that PPARδ and GLP-1R are located in a pathway that is closely related to DKD. We aimed to explore the impacts of variants in PPARD-GLP1R on the susceptibility to DKD in Chinese Han patients with type 2 diabetes mellitus (T2DM). A total of 600 T2DM patients (300 with DKD and 300 without DKD) and 200 healthy control subjects were enrolled to identify PPARD (rs2016520, rs2267668 and rs3777744) and GLP1R (rs3765467, rs1042044 and rs9296291) genotype. The SNaPshot method was used to identify variants in PPARD-GLP1R. We performed correlation analysis between variants in PPARD-GLP1R and the susceptibility to DKD. We observed that GLP1R rs3765467 (G > A) was associated with DKD (OR = 3.145, 95 % CI = 2.128-6.021, P = 0.035). None of the other SNPs were associated with DKD. Regarding DKD related traits, rs3765467 was associated with UACR levels and TC, significant differences were observed among patients with different genotypes of rs2016520 in terms of BMI and TG, and patients with the rs3777744 risk G allele had noticeably higher PPG and HbA1c levels (P < 0.05). Moreover, the results showed the interactions between PPARD rs3777744 and GLP1R rs3765467 in the occurrence of DKD (OR = 4.572, P = 0.029). The results of this study indicate the potential relationship between variants in PPARD-GLP1R and the susceptibility to DKD in Chinese Han patients with T2DM.
Collapse
Affiliation(s)
- Jinfang Song
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Yongru Zhuang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiaojun Pan
- Department of Pharmacy, Wuxi No.5 People's Hospital, Wuxi, 214000, China
| | - Ya Chen
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| | - Fen Xie
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| |
Collapse
|
4
|
Flindris K, Markozannes G, Moschos M, Gazouli M, Christodoulou A, Tsilidis K, Kitsos G. The Association between ADIPOQ Gene Polymorphisms and Diabetic Retinopathy Risk: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1254. [PMID: 39202535 PMCID: PMC11356243 DOI: 10.3390/medicina60081254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Recent studies have focused on the association between the risk of diabetic retinopathy (DR) and the rs1501299 and rs2241766 polymorphisms of the ADIPOQ gene; however, their results remain inconclusive. Thus, a systematic review and meta-analysis were carried out to clarify the role of these polymorphisms in the development of DR. Materials and Methods: A systematic search of electronic databases (PubMed, Scopus, and Cochrane Library) was conducted until 25 June 2024, and a reference list of relevant articles was collected, which explored the association between the rs1501299 and rs2241766 polymorphisms of the ADIPOQ gene and the risk of DR. The pooled odds ratios (OR) and 95% confidence intervals (CI) were estimated via random-effects model, and the meta-analysis was implemented by using Review Manager 5.4. Results: In total, 6 out of 182 studies, with 1888 cases (DR) and 2285 controls (without DR), were included in the meta-analysis. A statistically significant association between the rs1501299 polymorphism and the DR risk was recorded in G vs. T in the overall analysis (OR = 0.84, 95% CI = 0.72-0.99, p = <0.05, I2 = 23%, n = 5 studies). Additionally, the summary results in the subgroup analysis according to the control type were as follows: the DR versus diabetes mellitus (DM) control type revealed a statistically significant association in G vs. T: OR = 0.81, 95% CI = 0.67-0.97, p = <0.05, I2 = 27%, n = 4 studies; GG vs. GT: OR = 0.72, 95% CI = 0.53-0.98, p = <0.05, I2 = 49%, n = 4 studies; GG vs. (GT + TT): OR = 0.73, 95% CI = 0.55-0.96, p = <0.05, I2 = 44%, n = 4 studies. No significant association was observed between the rs2241766 polymorphism and the DR risk. Conclusions: The current meta-analysis supports the association between the rs1501299 polymorphism of the ADIPOQ gene and the DR risk in patients with DM.
Collapse
Affiliation(s)
- Konstantinos Flindris
- Department of Ophthalmology, University General Hospital of Ioannina, 45500 Ioannina, Greece; (A.C.); (G.K.)
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, 45500 Ioannina, Greece; (G.M.); (K.T.)
| | - Marilita Moschos
- 1st Department of Ophthalmology, University of Athens, 11527 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Aikaterini Christodoulou
- Department of Ophthalmology, University General Hospital of Ioannina, 45500 Ioannina, Greece; (A.C.); (G.K.)
| | - Konstantinos Tsilidis
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, 45500 Ioannina, Greece; (G.M.); (K.T.)
| | - Georgios Kitsos
- Department of Ophthalmology, University General Hospital of Ioannina, 45500 Ioannina, Greece; (A.C.); (G.K.)
| |
Collapse
|
5
|
Shao X, Lu X, Sun X, Jiang H, Chen Y. Preliminary studies on the molecular mechanism of intramuscular fat deposition in the longest dorsal muscle of sheep. BMC Genomics 2024; 25:592. [PMID: 38867146 PMCID: PMC11167792 DOI: 10.1186/s12864-024-10486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Intramuscular fat content is an important index reflecting the quality of mutton, which directly affects the flavor and tenderness of mutton. Livestock and poultry intramuscular fat content is influenced by genetics, nutritional level, and environmental factors. Key regulatory factors play a crucial role in intramuscular fat deposition. However, there is a limited amount of research on the identification and function of key genes involved in intramuscular fat content deposition specifically in sheep. RESULTS Histological differences in the longest dorsal muscle of the small-tailed frigid sheep increased in diameter and decreased in several muscle fibers with increasing monthly age; The intramuscular fat content of the longest dorsal muscle of the small-tailed cold sheep varied with age, with a minimum of 1 month of age, a maximum of 6 months of age, and a minimum of 12 months of age. Transcriptomic sequencing and bioinformatics analysis revealed a large number of differential genes in the longest dorsal muscles of little-tailed billy goats of different months of age, which were enriched in multiple GO entries and KEGG pathways. Among them, the pathway associated with intramuscular fat was the AMPK signaling pathway, and the related genes were PPARGC1A and ADIPOQ; Immunohistochemical studies showed that PPARGC1A and ADIPOQ proteins were expressed in connective tissues, cell membranes, and, to a lesser extent, the cytoplasm of the longest dorsal muscle of the little-tailed frigid sheep; Real-time PCR and Western Blot validation showed that PPARGC1A and ADIPOQ were both expressed in the longest dorsal muscle of the little-tailed frigid sheep at different ages, and there were age differences in the amount of expression. The ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle, and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle; As inferred from the above results, the ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle (r = -0.793, P < 0.05); and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle r = 0.923, P < 0.05). CONCLUSIONS Based on the above results, it can be inferred that the ADIPOQ gene is negatively correlated with the intramuscular fat content of the longest back muscle (r = -0.793, P < 0.05); the PPARGC1A gene is positively correlated with the intramuscular fat content of the longest back muscle (r = 0.923, P < 0.05).
Collapse
Affiliation(s)
- Xuwen Shao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xintan Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xinming Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China.
| | - Yang Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China.
| |
Collapse
|
6
|
Zeng Q, Zou D, Wei Y, Ouyang Y, Lao Z, Guo R. Association of vitamin D receptor gene rs739837 polymorphism with type 2 diabetes and gestational diabetes mellitus susceptibility: a systematic review and meta-analysis. Eur J Med Res 2022; 27:65. [PMID: 35526059 PMCID: PMC9080160 DOI: 10.1186/s40001-022-00688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Increasing evidence shows that genetic variants of genes in the diabetes mellitus (DM) metabolic pathway, such as the vitamin D receptor (VDR) gene rs739837 polymorphism, increase the risk of DM susceptibility. However, the findings have been inconsistent. The present study was performed to evaluate the association of VDR gene rs739837 and type 2 diabetes (T2DM) or gestational diabetes mellitus (GDM) risk. Methods A comprehensive meta-analysis and a subgroup analysis were conducted to assess the association between VDR rs739837 and T2DM or GDM among five genetic models (dominant, recessive, homozygote heterozygote, and allele models) using a fixed or random model. Results The meta-analysis included 9 studies. In the overall analysis, the results showed that VDR rs739837 was associated with an increased risk of T2DM or GDM in the allele model (T vs. G: OR = 1.088; 95% CI: 1.018–1.163; P = 0.012) and dominant model (TT + GT vs. GG: OR = 1.095; 95% CI: 1.001–1.197; P = 0.047). In the subgroup analysis, VDR rs739837 was also associated with an increased risk of T2DM in the allele model (T vs. G: OR = 1.159; 95% CI: 1.055–1.273; P = 0.002) and dominant model (TT + GT vs. GG: OR = 1.198; 95% CI: 1.048–1.370; P = 0.008). However, VDR rs739837 was not associated with GDM. Conclusions Significant associations were found between the VDR rs739837 polymorphism and T2DM susceptibility, but not with GDM. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00688-x.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, Guangdong, People's Republic of China.,Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, 528300, Guangdong, People's Republic of China.,Matenal and Child Research Institute, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, Guangdong, People's Republic of China
| | - Dehua Zou
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), People's Republic of China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, Guangdong, People's Republic of China
| | - Yingguang Ouyang
- Department of General Affairs, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, Guangdong, People's Republic of China.
| | - Zhaohang Lao
- Department of Ultrasound, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, Guangdong, People's Republic of China.
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, Guangdong, People's Republic of China. .,Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, 528300, Guangdong, People's Republic of China. .,Matenal and Child Research Institute, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, Guangdong, People's Republic of China. .,Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Han Q, Wang X, Ding X, Hao J, Li Q, Wang J, Yu H, Tang Z, Yang F, Cai G, Zhang D, Zhu H. Salivary Glycopatterns as Potential Non-Invasive Biomarkers for Diagnosing and Reflecting Severity and Prognosis of Diabetic Nephropathy. Front Endocrinol (Lausanne) 2022; 13:790586. [PMID: 35432212 PMCID: PMC9009518 DOI: 10.3389/fendo.2022.790586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
Discriminating between diabetic nephropathy (DN) and non-diabetic renal disease (NDRD) can help provide more specific treatments. However, there are no ideal biomarkers for their differentiation. Thus, the aim of this study was to identify biomarkers for diagnosing and predicting the progression of DN by investigating different salivary glycopatterns. Lectin microarrays were used to screen different glycopatterns in patients with DN or NDRD. The results were validated by lectin blotting. Logistic regression and artificial neural network analyses were used to construct diagnostic models and were validated in in another cohort. Pearson's correlation analysis, Cox regression, and Kaplan-Meier survival curves were used to analyse the correlation between lectins, and disease severity and progression. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses were used to identify corresponding glycoproteins and predict their function. Both the logistic regression model and the artificial neural network model achieved high diagnostic accuracy. The levels of Aleuria aurantia lectin (AAL), Lycopersicon esculentum lectin (LEL), Lens culinaris lectin (LCA), Vicia villosa lectin (VVA), and Narcissus pseudonarcissus lectin (NPA) were significantly correlated with the clinical and pathological parameters related to DN severity. A high level of LCA and a low level of LEL were associated with a higher risk of progression to end-stage renal disease. Glycopatterns in the saliva could be a non-invasive tool for distinguishing between DN and NDRD. The AAL, LEL, LCA, VVA, and NPA levels could reflect the severity of DN, and the LEL and LCA levels could indicate the prognosis of DN.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaochen Wang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiaonan Ding
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Jing Hao
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Qi Li
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Jifeng Wang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Zhen Tang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Fuquan Yang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dong Zhang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Hanyu Zhu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| |
Collapse
|
8
|
Han Q, Zhang Y, Jiao T, Li Q, Ding X, Zhang D, Cai G, Zhu H. Urinary sediment microRNAs can be used as potential noninvasive biomarkers for diagnosis, reflecting the severity and prognosis of diabetic nephropathy. Nutr Diabetes 2021; 11:24. [PMID: 34193814 PMCID: PMC8245546 DOI: 10.1038/s41387-021-00166-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Patients with both diabetes mellitus (DM) and kidney disease could have diabetic nephropathy (DN) or non-diabetic renal disease (NDRD). IgA nephropathy (IgAN) and membranous nephropathy (MN) are the major types of NDRD. No ideal noninvasive diagnostic model exists for differentiating them. Our study sought to construct diagnostic models for these diseases and to identify noninvasive biomarkers that can reflect the severity and prognosis of DN. METHODS The diagnostic models were constructed using logistic regression analysis and were validated in an external cohort by receiver operating characteristic curve analysis method. The associations between these microRNAs and disease severity and prognosis were explored using Pearson correlation analysis, Cox regression, Kaplan-Meier survival curves, and log-rank tests. RESULTS Our diagnostic models showed that miR-95-3p, miR-185-5p, miR-1246, and miR-631 could serve as simple and noninvasive tools to distinguish patients with DM, DN, DM with IgAN, and DM with MN. The areas under the curve of the diagnostic models for the four diseases were 0.995, 0.863, 0.859, and 0.792, respectively. The miR-95-3p level was positively correlated with the estimated glomerular filtration rate (p < 0.001) but was negatively correlated with serum creatinine (p < 0.01), classes of glomerular lesions (p < 0.05), and scores of interstitial and vascular lesions (p < 0.05). However, the miR-631 level was positively correlated with proteinuria (p < 0.001). A low miR-95-3p level and a high miR-631 level increased the risk of progression to end-stage renal disease (p = 0.002, p = 0.011). CONCLUSIONS These four microRNAs could be noninvasive tools for distinguishing patients with DN and NDRD. The levels of miR-95-3p and miR-631 could reflect the severity and prognosis of DN.
Collapse
Affiliation(s)
- Qiuxia Han
- School of Medicine, Nankai University, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Tianjin, China.,Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Youcai Zhang
- Department of Nephrology, Jiaozuo People's Hospital, Jiaozuo, China
| | - Tingting Jiao
- Department of Nephrology, Jiaozuo People's Hospital, Jiaozuo, China
| | - Qi Li
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaonan Ding
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Dong Zhang
- School of Medicine, Nankai University, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Tianjin, China. .,Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| | - Guangyan Cai
- School of Medicine, Nankai University, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Tianjin, China.,Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
9
|
Ma L, Wang S, Zhao H, Yu M, Deng X, Jiang Y, Cao Y, Li P, Niu W. Susceptibility of ApoB and PCSK9 Genetic Polymorphisms to Diabetic Kidney Disease Among Chinese Diabetic Patients. Front Med (Lausanne) 2021; 8:659188. [PMID: 33889589 PMCID: PMC8055819 DOI: 10.3389/fmed.2021.659188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022] Open
Abstract
This study aimed to investigate the susceptibility of 8 polymorphisms in ApoB and PCSK9 genes to diabetic kidney disease (DKD) in Chinese patients with type 2 diabetes mellitus. This is a case-control association study, including 575 DKD cases and 653 controls. Genotypes were determined using ligase detection reaction method, and data are analyzed using STATA software. The genotype distributions of rs1042034 and rs12720838 differed significantly between the two groups (P < 0.001 and P = 0.008, respectively). After adjusting for confounding factors, the mutations of rs1042034 and rs12720838 were associated with the significantly increased risk of DKD. For instance, carriers of rs1042034 T allele (CT and TT genotypes) were 1.07 times more likely to have DKD than carriers of rs1042034 CC genotype [odds ratio (OR) = 1.07, 95% confidence interval (CI): 1.03–1.10, P < 0.001]. Further, haplotype T-A-G-T in ApoB gene was overrepresented in cases (18.10%) compared with controls (12.76%) (PSimulated = 0.045), and haplotype T-A-G-T was associated with a 33% increased risk of DKD (OR = 1.33, 95% CI: 1.04, 1.70). In further haplotype-phenotype analysis, significant association was only noted for hypertension and omnibus haplotypes in ApoB gene (PSimulated = 0.001). Our findings indicate that ApoB gene is a candidate gene for DKD in Chinese patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Shaoting Wang
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Hailing Zhao
- Beijing Key Laboratory of Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Meijie Yu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangling Deng
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yongwei Jiang
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Laboratory of Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Wenquan Niu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|