1
|
Mushtaq S, Abbas MA, Nasir H, Mahmood A, Iqbal M, Janjua HA, Ahmad NM. Probing the behavior and kinetic studies of amphiphilic acrylate copolymers with bovine serum albumin. Sci Rep 2023; 13:4572. [PMID: 36941313 PMCID: PMC10027669 DOI: 10.1038/s41598-023-27515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/03/2023] [Indexed: 03/23/2023] Open
Abstract
This article presents that acrylate copolymers are the potential candidate against the adsorption of bovine serum albumin (BSA). A series of copolymers poly(methyl methacrylate) (pMMA), poly(3-sulfopropyl methacrylate-co-methyl methacrylate) p(SPMA-co-MMA), and poly(dimethylaminoethyl methacrylate-co-methyl methacrylate) p(DMAEMA-co-MMA) were synthesized via free radical polymerization. These amphiphilic copolymers are thermally stable with a glass transition temperature (Tg) 50-120 °C and observed the impact of surface charge on amphiphilic copolymers to control interactions with the bovine serum albumin (BSA). These copolymers pMD1 and pMS1 have surface charges, - 56.6 and - 72.6 mV at pH 7.4 in PBS buffer solution that controls the adsorption capacity of bovine serum albumin (BSA) on polymers surface. Atomic force microscopy (AFM) analysis showed minimum roughness of 0.324 nm and 0.474 nm for pMS1 and pMD1. Kinetic studies for BSA adsorption on these amphiphilic copolymers showed the best fitting of the pseudo-first-order model that showed physisorption and attained at 25 °C and pH 7.4 within 24 h.
Collapse
Affiliation(s)
- Shehla Mushtaq
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
- Chemical Engineering & Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Muhammad Asad Abbas
- Polymers Research Lab, Polymers and Composites Research Group, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Habib Nasir
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Azhar Mahmood
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Hussnain A Janjua
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Nasir M Ahmad
- Polymers Research Lab, Polymers and Composites Research Group, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
2
|
High density star poly HEMA containing bis-indole rich dendrimer inner core for integrated anti-fouling and anti-bacterial coating applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Rathinam K, Modi A, Schwahn D, Oren Y, Kasher R. Surface grafting with diverse charged chemical groups mitigates calcium phosphate scaling on reverse osmosis membranes during municipal wastewater desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Mushtaq S, Abbas MA, Nasir H, Mahmood A, Iqbal M, Janjua HA, Malik Q, Ahmad NM. Amphiphilic copolymers of dimethyl aminoethyl methacrylate and methyl methacrylate with controlled hydrophilicity for antialgal activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.51578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shehla Mushtaq
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Muhammad Asad Abbas
- Polymer Research Lab, School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Habib Nasir
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Azhar Mahmood
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Hussnain A. Janjua
- Department of Industrial Biotechnology, Atta‐Ur‐Rahman School of Applied Biosciences (ASAB) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Qamar Malik
- ABBOT Energy and Environment Inc., Alastair Ross Technology Center Calgary Alberta Canada
| | - Nasir M. Ahmad
- Polymer Research Lab, School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad Pakistan
| |
Collapse
|
5
|
Antialgal Synergistic Polystyrene Blended with Polyethylene Glycol and Silver Sulfadiazine for Healthcare Applications. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/6627736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polystyrene (PS) was blended with polyethylene glycol (PEG) and silver sulfadiazine (SS) with different weight proportions to form polymeric blends. These synthesized blends were preliminary characterized in terms of functional groups through the FTIR technique. All compositions were subjected to thermogravimetric analysis for studying thermal transition and were founded thermally stable even at 280°C. The zeta potential and average diameter of algal strains of Dictyosphaerium sp. (DHM1), Dictyosphaerium sp. (DHM2), and Pectinodesmus sp. (PHM3) were measured to be -32.7 mV, -33.0 mV, and -25.7 mV and 179.6 nm, 102.6 nm, and 70.4 nm, respectively. Upon incorporation of PEG and SS into PS blends, contact angles were decreased while hydrophilicity and surface energy were increased. However, increase of surface energy did not led to decrease of antialgal activities. This has indicated that biofilm adhesion is not a major antialgal factor in these blended materials. The synergetic effect of PEG and SS in PS blends has exhibited significant antialgal activity via the agar disk diffusion method. The PSPS10 composition with 10
PEG and 10
SS has exhibited highest inhibition zones 10.8 mm, 10.8 mm, and 11.3 mm against algal strains DHM1, DHM2, and DHM3, respectively. This thermally stable polystyrene blends with improved antialgal properties have potential for a wide range of applications including marine coatings.
Collapse
|