1
|
Bews HJ, Mackic L, Jassal DS. Preventing broken hearts in women with breast cancer: a concise review on chemotherapy-mediated cardiotoxicity. Can J Physiol Pharmacol 2024; 102:487-497. [PMID: 38039515 DOI: 10.1139/cjpp-2023-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Cancer and cardiovascular disease are the leading causes of death for Canadian women. One in eight Canadian women will receive the life-changing diagnosis of breast cancer (BC) in their lifetime, with 1 in 34 dying from the disease. Although doxorubicin (DOX) and trastuzumab (TRZ) have significantly improved survival in women diagnosed with human epidermal growth factor receptor 2 (HER2)-positive BC, approximately one in four women who receive this treatment are at risk of developing chemotherapy-induced cardiotoxicity. Cardiotoxicity is defined as a decline in left ventricular ejection fraction (LVEF) of >10% to an absolute value of <53%. Current guidelines recommend the serial monitoring of LVEF in this patient population using non-invasive cardiac imaging modalities including transthoracic echocardiography or multi-gated acquisition scan; however, this will only allow for the detection of established cardiotoxicity. Recent studies have demonstrated that a reduction in global longitudinal strain by speckle tracking echocardiography can identify pre-clinical systolic dysfunction prior to a decline in overall LVEF. Implementation of early detection techniques would allow for the prompt initiation of cardioprotective strategies. In addition to the early detection of chemotherapy-mediated cardiotoxicity, the prophylactic use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, statins, exercise, and nutraceutical therapies have been studied in the setting of cardio-oncology.
Collapse
Affiliation(s)
- Hilary J Bews
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lana Mackic
- Institute of Cardiovascular Sciences, St. Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
| | - Davinder S Jassal
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
- Department of Radiology, St. Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Cantoni V, Green R, Assante R, D'Antonio A, Maio F, Criscuolo E, Bologna R, Petretta M, Cuocolo A, Acampa W. Prevalence of cancer therapy cardiotoxicity as assessed by imaging procedures: A scoping review. Cancer Med 2023; 12:11396-11407. [PMID: 36999824 PMCID: PMC10242861 DOI: 10.1002/cam4.5854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Advances in treatment and optimization of chemotherapy protocols have greatly improved survival in cancer patients. Unfortunately, treatment can cause a reduction in left ventricular (LV) ejection fraction (EF) leading to cancer therapy-related cardiac dysfunction (CTRCD). We conducted a scoping review of published literature in order to identify and summarize the reported prevalence of cardiotoxicity evaluated by noninvasive imaging procedures in a wide-ranging of patients referred to cancer treatment as chemotherapy and/or radiation therapy. METHODS Different databases were checked (PubMed, Embase, and Web of Science) to identify studies published from January 2000 to June 2021. Articles were included if they reported data on LVEF evaluation in oncological patients treated with chemotherapeutic agents and/or radiotherapy, measured by echocardiography and/or nuclear or cardiac magnetic resonance imaging test, providing criteria of CTRCD evaluation such as the specific threshold for LVEF decrease. RESULTS From 963 citations identified, 46 articles, comprising 6841 patients, met the criteria for the inclusion in the scoping review. The summary prevalence of CTRCD as assessed by imaging procedures in the studies reviewed was 17% (95% confidence interval, 14-20). CONCLUSIONS The results of our scoping review endorse the recommendations regarding imaging modalities to ensure identification of cardiotoxicity in patients undergoing cancer therapies. However, to improve patient management, more homogeneous CTRCD evaluation studies are required, reporting a detailed clinical assessment of the patient before, during and after treatment.
Collapse
Affiliation(s)
- Valeria Cantoni
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Roberta Green
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Roberta Assante
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Adriana D'Antonio
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Francesca Maio
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Emanuele Criscuolo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Roberto Bologna
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | | | - Alberto Cuocolo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Wanda Acampa
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
3
|
Zhang L, Zhang R, Shuai P, Chen J, Yin L. A global case meta-analysis of three-dimensional speckle tracking for evaluating the cardiotoxicity of anthracycline chemotherapy in breast cancer. Front Cardiovasc Med 2022; 9:942620. [PMID: 36211571 PMCID: PMC9537536 DOI: 10.3389/fcvm.2022.942620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Anthracycline cardiotoxicity has become one of the most common complications of anthracycline therapy. Regular follow-up of chemotherapy patients with myocardial deformation parameters might be helpful for early diagnosis of myocardial damage and protective intervention. This study aimed to investigate the value of three-dimensional speckle tracking imaging (3D-STI) in diagnosing and predicting potential cardiotoxicity in breast cancer patients undergoing anthracycline therapy through meta-analysis based on global cases collection. Methods Relevant case-control studies published prior to November 2021 were extracted to assess cardiotoxicity by 3D-STI in breast cancer patients undergoing chemotherapy. Weighted mean difference (WMD) and 95% confidence interval (CI) were used as pooled statistics. Meta regression and subgroup analysis were employed to identify sources of heterogeneity and publication bias was evaluated by Egger’s test and funnel plot. Results A total of 1,515 breast cancer patients from 14 studies were enrolled and followed up for 4 or 6 cycles of chemotherapy. Following chemotherapy, absolute values of Left ventricular ejection fraction (LVEF) WMD = –1.59, 95% CI (–1.99, –1.20); p < 0.001; global longitudinal strain (GLS) WMD = 2.19, 95% CI (1.87, 2.51); p < 0.001; global circumferential strain (GCS) WMD = 1.69, 95% CI (1.11, 2.26); p < 0.001; global radial strain (GRS) WMD = –1.72,95% CI (–2.44, –1.00); p < 0.001, and global area strain (GAS) WMD = 6.25, 95% CI (4.48, 8.02); p < 0.001 were decreased. A medium degree of heterogeneity was shown for values of LVEF (I2 = 44.4%, p = 0.037) while values for GLS (I2 = 59.0%, p = 0.003), GCS (I2 = 81.3%, p < 0.001) and GRS (I2 = 57.5%, P = 0.004) showed a large degree of heterogeneity. Egger’s test and funnel plot showed no significant publication bias in GLS, GCS and GAS data (all p > 0.05). Conclusion 3D-STI has utility for the non-invasive and objective evaluation of changes in left ventricular function in breast cancer patients undergoing chemotherapy with anthracyclines. The current findings have clinical potential for the early evaluation of myocardial injury caused by chemotherapy toxicity.
Collapse
Affiliation(s)
- Li Zhang
- Clinical Medicine Academy, Southwest Medical University, Luzhou, China
| | - Rui Zhang
- Public Health College, Southwest Medical University, Luzhou, China
| | - Ping Shuai
- Public Health College, Southwest Medical University, Luzhou, China
- Health Management Center of Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jie Chen
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Lixue Yin
- Clinical Medicine Academy, Southwest Medical University, Luzhou, China
- Key Laboratory of Ultrasound in Cardiac Electrophysiology and Biomechanics of Sichuan Province, Institute of Ultrasound in Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Lixue Yin,
| |
Collapse
|
4
|
Velasco-Ruiz A, Nuñez-Torres R, Pita G, Wildiers H, Lambrechts D, Hatse S, Delombaerde D, Van Brussel T, Alonso MR, Alvarez N, Herraez B, Vulsteke C, Zamora P, Lopez-Fernandez T, Gonzalez-Neira A. POLRMT as a Novel Susceptibility Gene for Cardiotoxicity in Epirubicin Treatment of Breast Cancer Patients. Pharmaceutics 2021; 13:1942. [PMID: 34834357 PMCID: PMC8622627 DOI: 10.3390/pharmaceutics13111942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
Anthracyclines are among the most used chemotherapeutic agents in breast cancer (BC). However their use is hampered by anthracycline-induced cardiotoxicity (AIC). The currently known clinical and genetic risk factors do not fully explain the observed inter-individual variability and only have a limited ability to predict which patients are more likely to develop this severe toxicity. To identify novel predictive genes, we conducted a two-stage genome-wide association study in epirubicin-treated BC patients. In the discovery phase, we genotyped over 700,000 single nucleotide variants in a cohort of 227 patients. The most interesting finding was rs62134260, located 4kb upstream of POLRMT (OR = 5.76, P = 2.23 × 10-5). We replicated this association in a validation cohort of 123 patients (P = 0.021). This variant regulates the expression of POLRMT, a gene that encodes a mitochondrial DNA-directed RNA polymerase, responsible for mitochondrial gene expression. Individuals harbouring the risk allele had a decreased expression of POLRMT in heart tissue that may cause an impaired capacity to maintain a healthy mitochondrial population in cardiomyocytes under stressful conditions, as is treatment with epirubicin. This finding suggests a novel molecular mechanism involved in the development of AIC and may improve our ability to predict patients who are at risk.
Collapse
Affiliation(s)
- Alejandro Velasco-Ruiz
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Rocio Nuñez-Torres
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Guillermo Pita
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Multidisciplinary Breast Centre, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Katholieke Universiteit (KU) Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Centre for Cancer Biology (CCB), Flanders Institute for Biotechnology (VIB), Rijvisschestraat 120, 9052 Leuven, Belgium; (D.L.); (T.V.B.)
| | - Sigrid Hatse
- Multidisciplinary Breast Centre, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Katholieke Universiteit (KU) Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Danielle Delombaerde
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, 9000 Ghent, Belgium; (D.D.); (C.V.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Thomas Van Brussel
- Laboratory of Translational Genetics, Centre for Cancer Biology (CCB), Flanders Institute for Biotechnology (VIB), Rijvisschestraat 120, 9052 Leuven, Belgium; (D.L.); (T.V.B.)
| | - M. Rosario Alonso
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Nuria Alvarez
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Belen Herraez
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Christof Vulsteke
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, 9000 Ghent, Belgium; (D.D.); (C.V.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Pilar Zamora
- Department of Medical Oncology, University Hospital La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Teresa Lopez-Fernandez
- Department of Cardiology, University Hospital La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Anna Gonzalez-Neira
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| |
Collapse
|