1
|
Galusko V, Wenzl FA, Vandenbriele C, Panoulas V, Lüscher TF, Gorog DA. Current and novel biomarkers in cardiogenic shock. Eur J Heart Fail 2025. [PMID: 39822053 DOI: 10.1002/ejhf.3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 01/19/2025] Open
Abstract
Cardiogenic shock (CS) carries a 30-50% in-hospital mortality rate, with little improvement in outcomes in the last decade. Challenges in improving outcomes are closely linked to the frequent late presentation or diagnosis of CS where the 'point of no return' has often passed, leading to haemodynamic dysregulation, progressive myocardial depression, hypotension, and a downward spiral of hypoperfusion, organ dysfunction and decreasing myocardial function, driven by inflammation and metabolic derangements. Novel therapeutic interventions may have varying efficacy depending on the type and stage of shock in which they are applied. Biomarkers that aid prediction and early detection of CS, provide early signs of organ dysfunction and define prognosis could help optimize management. Temporal change in such biomarkers, particularly in response to pharmacological interventions and/or mechanical circulatory support, can guide management and predict outcome. Several novel biomarkers enhance the prediction of mortality in CS, compared to conventional parameters such as lactate, with some, such as adrenomedullin and circulating dipeptidyl peptidase 3, also able to predict the development of CS. Some biomarkers reflect systemic inflammation (e.g. interleukin-6, angiopoietin 2, fibroblast growth factor 23 and suppressor of tumorigenicity 2) and are not specific to CS, yet inform on the activation of important pathways involved in the downward shock spiral. Other biomarkers signal end-organ hypoperfusion and could guide targeted interventions, while some may serve as novel therapeutic targets. We critically review current and novel biomarkers that guide prediction, detection, and prognostication in CS. Future use of biomarkers may help improve management in these high-risk patients.
Collapse
Affiliation(s)
- Victor Galusko
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Florian A Wenzl
- Centre for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- National Disease Registration and Analysis Service, NHS, London, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Christophe Vandenbriele
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Heart Center, OLV Hospital, Aalst, Belgium
| | - Vasileios Panoulas
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - Thomas F Lüscher
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Centre for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
- School of Cardiovascular Medicine and Sciences, Kings College London, London, UK
| | - Diana A Gorog
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- School of Cardiovascular Medicine and Sciences, Kings College London, London, UK
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hertfordshire, UK
| |
Collapse
|
2
|
Numan L, Aarts E, Ramjankhan F, Oerlemans MIF, van der Meer MG, de Jonge N, Oppelaar A, Kemperman H, Asselbergs FW, Van Laake LW. Soluble Suppression of Tumorigenicity-2 Predicts Mortality and Right Heart Failure in Patients With a Left Ventricular Assist Device. J Am Heart Assoc 2024; 13:e029827. [PMID: 38193339 PMCID: PMC10926819 DOI: 10.1161/jaha.123.029827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Soluble suppression of tumorigenicity-2 (sST2) predicts mortality in patients with heart failure. The predictive value of sST2 in patients with a left ventricular assist device remains unknown. Therefore, we studied the relationship between sST2 and outcome after left ventricular assist device implantation. METHODS AND RESULTS sST2 levels of patients with a left ventricular assist device implanted between January 2015 and December 2022 were included in this observational study. The median follow-up was 25 months, during which 1573 postoperative sST2 levels were measured in 199 patients, with a median of 29 ng/mL. Survival of patients with normal and elevated preoperative levels was compared using Kaplan-Meier analysis, which did not differ significantly (P=0.22) between both groups. The relationship between postoperative sST2, survival, and right heart failure was evaluated using a joint model, which showed a significant relationship between the absolute sST2 level and mortality, with a hazard ratio (HR) of 1.20 (95% CI, 1.10-1.130; P<0.01) and an HR of 1.22 (95% CI, 1.07-1.39; P=0.01) for right heart failure, both per 10-unit sST2 increase. The sST2 instantaneous change was not predictive for survival or right heart failure (P=0.99 and P=0.94, respectively). Multivariate joint model analysis showed a significant relationship between sST2 with mortality adjusted for NT-proBNP (N-terminal pro-B-type natriuretic peptide), with an HR of 1.19 (95% CI, 1.00-1.42; P=0.05), whereas the HR of right heart failure was not significant (1.22 [95% CI, 0.94-1.59]; P=0.14), both per 10-unit sST2 increase. CONCLUSIONS Time-dependent postoperative sST2 predicts all-cause mortality after left ventricular assist device implantation after adjustment for NT-proBNP. Future research is warranted into possible target interventions and the optimal monitoring frequency.
Collapse
Affiliation(s)
- Lieke Numan
- Department of CardiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Emmeke Aarts
- Department of Methodology and StatisticsUtrecht UniversityUtrechtthe Netherlands
| | - Faiz Ramjankhan
- Department of Cardiothoracic SurgeryUniversity Medical Center Utrecht, University of UtrechtUtrechtthe Netherlands
| | - Marish I. F. Oerlemans
- Department of CardiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Manon G. van der Meer
- Department of CardiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Nicolaas de Jonge
- Department of CardiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Anne‐Marie Oppelaar
- Department of Cardiothoracic SurgeryUniversity Medical Center Utrecht, University of UtrechtUtrechtthe Netherlands
| | - Hans Kemperman
- Department of Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Folkert W. Asselbergs
- Department of CardiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health SciencesUniversity College LondonLondonUnited Kingdom
- Health Data Research UK and Institute of Health InformaticsUniversity College LondonLondonUnited Kingdom
- Department of Cardiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical Centre, University of AmsterdamAmsterdamthe Netherlands
| | - Linda W. Van Laake
- Department of CardiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
3
|
Wendt R, Lingitz MT, Laggner M, Mildner M, Traxler D, Graf A, Krotka P, Moser B, Hoetzenecker K, Kalbitz S, Lübbert C, Beige J, Ankersmit HJ. Clinical Relevance of Elevated Soluble ST2, HSP27 and 20S Proteasome at Hospital Admission in Patients with COVID-19. BIOLOGY 2021; 10:1186. [PMID: 34827178 PMCID: PMC8615143 DOI: 10.3390/biology10111186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
Although, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents one of the biggest challenges in the world today, the exact immunopathogenic mechanism that leads to severe or critical Coronavirus Disease 2019 (COVID-19) has remained incompletely understood. Several studies have indicated that high systemic plasma levels of inflammatory cytokines result in the so-called "cytokine storm", with subsequent development of microthrombosis, disseminated intravascular coagulation, and multiorgan-failure. Therefore, we reasoned those elevated inflammatory molecules might act as prognostic factors. Here, we analyzed 245 serum samples of patients with COVID-19, collected at hospital admission. We assessed the levels of heat shock protein 27 (HSP27), soluble suppressor of tumorigenicity-2 (sST2) and 20S proteasome at hospital admission and explored their associations with overall-, 30-, 60-, 90-day- and in-hospital mortality. Moreover, we investigated their association with the risk of ventilation. We demonstrated that increased serum sST2 was uni- and multivariably associated with all endpoints. Furthermore, we also identified 20S proteasome as independent prognostic factor for in-hospital mortality (sST2, AUC = 0.73; HSP27, AUC = 0.59; 20S proteasome = 0.67). Elevated sST2, HSP27, and 20S proteasome levels at hospital admission were univariably associated with higher risk of invasive ventilation (OR = 1.8; p < 0.001; OR = 1.1; p = 0.04; OR = 1.03, p = 0.03, respectively). These findings could help to identify high-risk patients early in the course of COVID-19.
Collapse
Affiliation(s)
- Ralph Wendt
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
| | - Marie-Therese Lingitz
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
| | - Michael Mildner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Denise Traxler
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alexandra Graf
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalg. 23, 1090 Vienna, Austria; (A.G.); (P.K.)
| | - Pavla Krotka
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalg. 23, 1090 Vienna, Austria; (A.G.); (P.K.)
| | - Bernhard Moser
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Konrad Hoetzenecker
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Sven Kalbitz
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
| | - Christoph Lübbert
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine II, Leipzig University Medical Center, Liebigstr. 20, 04103 Leipzig, Germany
| | - Joachim Beige
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, 06108 Halle/Saale, Germany
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| |
Collapse
|