1
|
Ruan Y, Yuan PP, Li PY, Chen Y, Fu Y, Gao LY, Wei YX, Zheng YJ, Li SF, Feng WS, Zheng XK. Tingli Dazao Xiefei Decoction ameliorates asthma in vivo and in vitro from lung to intestine by modifying NO-CO metabolic disorder mediated inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116503. [PMID: 37116727 DOI: 10.1016/j.jep.2023.116503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a chronic airway inflammatory disease. Current treatment of mainstream medications has significant side effects. There is growing evidence that the refractoriness of asthma is closely related to common changes in the lung and intestine. The lungs and intestines, as sites of frequent gas exchange in the body, are widely populated with gas signaling molecules NO and CO, which constitute NO-CO metabolism and may be relevant to the pathogenesis of asthma in the lung and intestine. The Chinese herbal formula Tingli Dazao Xiefei Decoction (TD) is commonly used in clinical practice to treat asthma with good efficacy, but there are few systematic evaluations of the efficacy of asthma on NO-CO metabolism, and the mode of action of its improving effect on the lung and intestine is unclear. AIM OF THE STUDY To investigate the effect of TD on the lung and intestine of asthmatic rats based on NO-CO metabolism. MATERIALS AND METHODS In vivo, we established a rat asthma model by intraperitoneal injection of sensitizing solution with OVA atomization, followed by intervention by gavage administration of TD. We simultaneously examined alterations in basal function, pathology, NO-CO metabolism, inflammation and immune cell homeostasis in the lungs and intestines of asthmatic rats, and detected changes in intestinal flora by macrogenome sequencing technology, with a view to multi-angle evaluation of the treatment effects of TD on asthmatic rats. In vitro, lung cells BEAS-2B and intestinal cells NCM-460 were used to establish a model of lung injury causing intestinal injury using LPS and co-culture chambers, and lung cells or intestinal cells TD-containing serum was administered to intervene. Changes in inflammatory, NO-CO metabolism-related, cell barrier-related and oxidative stress indicators were measured in lung cells and intestinal cells to evaluate TD on intestinal injury by way of amelioration and in-depth mechanism. RESULTS In vivo, our results showed significant basal functional impairment in the lung and intestine of asthmatic rats, and an inflammatory response, immune cell imbalance and intestinal flora disturbance elicited by NO-CO metabolic disorders were observed (P < 0.05 or 0.01). The administration of TD was shown to deliver a multidimensional amelioration of the impairment induced by NO-CO metabolic disorders (P < 0.05 or 0.01). In vitro, the results showed that LPS-induced lung cells BEAS-2B injury could cause NO-CO metabolic disorder-induced inflammatory response, cell permeability damage and oxidative stress damage in intestinal cells NCM-460 (P < 0.01). The ameliorative effect on intestinal cells NCM-460 could only be exerted when TD-containing serum interfered with lung cells BEAS-2B (P < 0.01), suggesting that the intestinal ameliorative effect of TD may be exerted indirectly through the lung. CONCLUSION TD can ameliorate NO-CO metabolism in the lung and thus achieve the indirectly amelioration of NO-CO metabolism in the intestine, ultimately achieving co-regulation of lung and intestinal inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders in asthma in vivo and in vitro. Targeting lung and intestinal NO-CO metabolic disorders in asthma may be a new therapeutic idea and strategy for asthma.
Collapse
Affiliation(s)
- Yuan Ruan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Pei-Pei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| | - Pan-Ying Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Yi Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Li-Yuan Gao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Ya-Xin Wei
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Ya-Juan Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Sai-Fei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P. R., Zhengzhou, 450008, China.
| | - Xiao-Ke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P. R., Zhengzhou, 450008, China.
| |
Collapse
|
2
|
Yan Z, Zong Y, Zhang C, Han Z, Wu L, Qin L, Liu T. Exploring the role of Tibetan medicinal formula Qishiwei Zhenzhu Pills (Ranasampel) against diabetes mellitus-linked cognitive impairment of db/db mice through serum pharmacochemistry and microarray data analysis. Front Aging Neurosci 2022; 14:1033128. [PMID: 36620773 PMCID: PMC9814129 DOI: 10.3389/fnagi.2022.1033128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Diabetes cognitive impairment (DCI) is a common diabetic central nervous system disorder that severely affects the quality of life of patients. Qishiwei Zhenzhu Pills (Ranasampel) is a valuable Tibetan medicine formula with the ability to improve cerebral blood vessels, protect nerves and improve learning and memory, which has also been widely verified in clinical and basic research. Currently, the prevention and treatment of DCI are still in the exploratory research stage, and the use of Ranasampel will provide new ideas and insights for its treatment. Objective This study is to explore the absorbed components in serum derived from Ranasampel using serum pharmacochemistry, then identify the potential mechanism of Ranasampel for the treatment of DCI through bioinformatics and microarray data validation. Methods The UPLC-Q-Exactive MS/MS-based serum pharmacochemistry method was conducted to identify the main active components in serum containing Ranasampel. Then, these components were used to predict the possible biological targets of Ranasampel and explore the potential targets in treating DCI by overlapping with differentially expressed genes (DEGs) screened from Gene Expression Omnibus datasets. Afterward, the protein-protein interaction network, enrichment analyses, hub gene identification, and co-expression analysis were used to study the potential mechanism of Ranasampel. Particularly, the hub genes and co-expression transcription factors were further validated using hippocampal expression profiles of db/db mice treated with Ranasampel, while the Morris water-maze test and H&E staining were used to assess the spatial learning and memory behaviors and histopathological changes. Results Totally, 40 compounds derived from Ranasampel had been identified by serum sample analysis, and 477 genes related to these identified compounds in Ranasampel, 110 overlapping genes were collected by the intersection of Ranasampel target genes and DEGs. Further comprehensive analysis and verification emphasized that the mechanism of Ranasampel treatment of DCI may be related to the improvement of learning and memory function as well as insulin resistance, hyperglycemia-induced neuronal damage, and neuroinflammation. Conclusion This study provided useful strategies to explore the potential material basis for compound prescriptions such as Ranasampel. These hub genes and common pathways also provided new ideas for further study of therapeutic targets of DCI and the pharmacological mechanism of Ranasampel.
Collapse
Affiliation(s)
- Zhiyi Yan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghua Zong
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Chengfei Zhang
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Zekun Han
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Tonghua Liu,
| |
Collapse
|
3
|
Evaluation of the Mechanism of Modified Lingguizhugan Decoction in the Treatment of Nonalcoholic Fatty Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4576679. [PMID: 35116066 PMCID: PMC8807046 DOI: 10.1155/2022/4576679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) may develop into cirrhosis and liver cancer, which imposes a great burden to individuals and society. Lingguizhugan decoction is a commonly used dampness dispelling medication in traditional Chinese medicine and is often used to treat those with phlegm and retained fluid from various causes and pathogeneses. The objective of this study was to explore the effect and mechanism of modified Lingguizhugan decoction (MLGZG) on lipid metabolism and the inflammatory response to identify a theoretical basis to promote its clinical application in NASH therapy. After treatment with MLGZG for 8 weeks, the weight of high-fat-diet (HFD)-fed NASH rats was significantly higher than that of rats in the normal group, and the weights in each dose group were significantly lower than those in the model group. The treatment groups (low, medium, and high doses) had different degrees of improvement in the changes in hepatocyte tissue structure, steatosis, and inflammatory infiltration. Compared with that in the normal group, the expression of TNF receptor-associated factor-3 (TRAF-3) and nuclear factor κB (NFκB) in the model group significantly increased to varying degrees. Compared with the NASH group, the treatment groups (low, middle, and high doses) showed modified lipid metabolism gene expression and decreased inflammatory factor expression levels. Modified Lingguizhugan decoction can improve the general condition of rats with nonalcoholic fatty liver disease by reducing the expression levels of TRAF3, NF-κB, the Toll-like receptor 4 (TLR-4) pathway, and related proteins, as well as the expression levels of lipid metabolism genes and cytokines.
Collapse
|