1
|
Zhou S, Huang L, Lin Y, Bhowmick B, Zhao J, Liao C, Guan Q, Wang J, Han Q. Molecular surveillance and genetic diversity of Anaplasma spp. in cattle (Bos taurus) and goat (Capra aegagrus hircus) from Hainan island/province, China. BMC Vet Res 2023; 19:213. [PMID: 37853405 PMCID: PMC10583423 DOI: 10.1186/s12917-023-03766-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Anaplasmosis is a highly prevalent tick-borne intracellular bacterial disease that affects various host species globally, particularly ruminants in tropical and subtropical regions. However, information regarding the distribution and epidemiology of anaplasmosis in small and large ruminants on Hainan Isalnd is limited. To address this knowledge gap, the present study aimed to assess the occurrence of Anaplasma spp. infections in goats (N = 731) and cattle (N = 176) blood samples using nested PCR and conventional PCR based assays. The results revealed an overall prevalence of 30.1% in goats and 14.8% in cattle. The infection rates of A. bovis, A. phagocytophilum, A. ovis and A. capra in goat samples were 22.7%, 13.8%, 2.0% and 3.4%, respectively, while the infection rates of A. bovis, A. phagocytophilum and A. marginale in cattle samples were 11.4%, 6.3% and 5.7%, respectively. A. bovis exhibited the highest prevalence among the Anaplasma spp. in both goat and cattle samples. In addition, the most frequent co-infection was the one with A. phagocytophilum and A. bovis. It was found that the age, sex and feeding habits of cattle and goats were considered to be important risk factors. Evaluation of the risk factor relating to the rearing system showed that the infection rate for the free-range goats and cattle was significantly higher when compared with stall-feeding system.This study represents one of the largest investigations on the distribution, prevalence, and risk factors associated with Anaplasma infection in ruminants on Hainan Island, highlighting a higher circulation of the infection in the region than previously anticipated. Further reasesrch is necessary to investigate tick vectors, reservoir animals, and the zoonotic potential of the Anaplasma spp. in this endemic region of Hainan Island.
Collapse
Affiliation(s)
- Sa Zhou
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Liangyuan Huang
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Yang Lin
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Biswajit Bhowmick
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jianguo Zhao
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Chenghong Liao
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Qingfeng Guan
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jinhua Wang
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China.
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
2
|
Quiroz-Castañeda RE, Aguilar-Díaz H, Amaro-Estrada I. An alternative vaccine target for bovine Anaplasmosis based on enolase, a moonlighting protein. Front Vet Sci 2023; 10:1225873. [PMID: 37808115 PMCID: PMC10556744 DOI: 10.3389/fvets.2023.1225873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The discovery of new targets for preventing bovine anaplasmosis has moved away from focusing on proteins that have already been extensively studied in Anaplasma marginale, including the Major Surface Proteins, Outer Membrane Proteins, and Type IV Secretion System proteins. An alternative is moonlighting or multifunctional proteins, capable of performing various biological functions within various cellular compartments. There are several reports on the role of moonlighting proteins as virulence factors in various microorganisms. Moreover, it is known that about 25% of all moonlighting is involved in the virulence of pathogens. In this work, for the first time, we present the identification of three enolase proteins (AmEno01, AmEno15, and AmEno31) in the genome of Mexican strains of A. marginale. Using bioinformatics tools, we predicted the catalytic domains, enolase signature, and amino acids binding magnesium ion of the catalytic domain and performed a phylogenetic reconstruction. In addition, by molecular docking analysis, we found that AmEno01 would bind to erythrocyte proteins spectrin, ankyrin, and stomatin. This adhesion function has been reported for enolases from other pathogens. It is considered a promising target since blocking this function would impede the fundamental adhesion process that facilitates the infection of erythrocytes. Additionally, molecular docking predicts that AmEno01 could bind to extracellular matrix protein fibronectin, which would be significant if we consider that some proteins with fibronectin domains are localized in tick gut cells and used as an adhesion strategy to gather bacteria before traveling to salivary glands. Derived from the molecular docking analysis of AmEno01, we hypothesized that enolases could be proteins driven by the pathogen and redirected at the expense of the pathogen's needs.
Collapse
|
3
|
Dantán-González E, Quiroz-Castañeda RE, Aguilar-Díaz H, Amaro-Estrada I, Martínez-Ocampo F, Rodríguez-Camarillo S. Mexican Strains of Anaplasma marginale: A First Comparative Genomics and Phylogeographic Analysis. Pathogens 2022; 11:pathogens11080873. [PMID: 36014994 PMCID: PMC9415054 DOI: 10.3390/pathogens11080873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
The One Health approach looks after animal welfare and demands constant monitoring of the strains that circulate globally to prevent outbreaks. Anaplasma marginale is the etiologic agent of bovine anaplasmosis and is endemic worldwide. This study aimed to analyze, for the first time, the genetic diversity of seven Mexican strains of A. marginale and their relationship with other strains reported. The main features of A. marginale were obtained by characterizing all 24 genomes reported so far. Genetic diversity and phylogeography were analyzed by characterizing the msp1a gene and 5′-UTR microsatellite sequences and constructing a phylogenetic tree with 540 concatenated genes of the core genome. The Mexican strains show 15 different repeat sequences in six MSP1a structures and have phylogeographic relationships with strains from North America, South America, and Asia, which confirms they are highly variable. Based on our results, we encourage the performance of genome sequencing of A. marginale strains to obtain a high assembly level of molecular markers and the performance of extensive phylogeographic analysis. Undoubtedly, genomic surveillance helps build a picture of how a pathogen changes and evolves in geographical regions. However, we cannot discard the study of relationships pathogens establish with ticks and how they have co-evolved to establish themselves as a successful transmission system.
Collapse
Affiliation(s)
- Edgar Dantán-González
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (E.D.-G.); (F.M.-O.)
| | - Rosa Estela Quiroz-Castañeda
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62574, Mexico; (H.A.-D.); (I.A.-E.); (S.R.-C.)
- Correspondence: or
| | - Hugo Aguilar-Díaz
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62574, Mexico; (H.A.-D.); (I.A.-E.); (S.R.-C.)
| | - Itzel Amaro-Estrada
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62574, Mexico; (H.A.-D.); (I.A.-E.); (S.R.-C.)
| | - Fernando Martínez-Ocampo
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (E.D.-G.); (F.M.-O.)
| | - Sergio Rodríguez-Camarillo
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62574, Mexico; (H.A.-D.); (I.A.-E.); (S.R.-C.)
| |
Collapse
|
4
|
Molecular Detection of Tick-Borne Pathogens in American Bison ( Bison bison) at El Uno Ecological Reserve, Janos, Chihuahua, Mexico. Pathogens 2021; 10:pathogens10111428. [PMID: 34832584 PMCID: PMC8621901 DOI: 10.3390/pathogens10111428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
American bison (Bison bison) is listed as near-threatened and in danger of extinction in Mexico. Recent studies have demonstrated the presence of several emerging pathogens at the Janos Biosphere Reserve (JBR), inhabited by one wild herd of American bison. Blood samples were collected from 26 American bison in the JBR. We tested for the presence of Anaplasma marginale, Babesia bigemina, B. bovis, Borrelia burgdorferi sensu lato, and Rickettsia rickettsii DNA using nested and semi-nested PCR protocols performing duplicates in two different laboratories. Results showed three animals (11.5%) positive for B. burgdorferi s. l., three more (11.5%) for Rickettsia rickettsii, and four (19.2%) for B. bovis. Two individuals were co-infected with B. burgdorferi s. l. and B. bovis. We found no animals positive for A. marginale and B. bigemina. This is the first report in America of R. rickettsii in American bison. American bison has been described as an important reservoir for pathogens of zoonotic and veterinary importance; thus, the presence of tick-borne pathogen DNA in the JBR American bison indicates the importance of continuous wildlife health surveys.
Collapse
|
5
|
Ribeiro DM, Salama AAK, Vitor ACM, Argüello A, Moncau CT, Santos EM, Caja G, de Oliveira JS, Balieiro JCC, Hernández-Castellano LE, Zachut M, Poleti MD, Castro N, Alves SP, Almeida AM. The application of omics in ruminant production: a review in the tropical and sub-tropical animal production context. J Proteomics 2020; 227:103905. [PMID: 32712373 DOI: 10.1016/j.jprot.2020.103905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023]
Abstract
The demand for animal products (e.g. dairy and beef) in tropical regions is expected to increase in parallel with the public demand for sustainable practices, due to factors such as population growth and climate change. The necessity to increase animal production output must be achieved with better management and production technologies. For this to happen, novel research methodologies, animal selection and postgenomic tools play a pivotal role. Indeed, improving breeder selection programs, the quality of meat and dairy products as well as animal health will contribute to higher sustainability and productivity. This would surely benefit regions where resource quality and quantity are increasingly unstable, and research is still very incipient, which is the case of many regions in the tropics. The purpose of this review is to demonstrate how omics-based approaches play a major role in animal science, particularly concerning ruminant production systems and research associated to the tropics and developing countries. SIGNIFICANCE: Environmental conditions in the tropics make livestock production harder, compared to temperate regions. Due to global warming, the sustainability of livestock production will become increasingly problematic. The use of novel omics technologies could generate useful information to understand adaptation mechanisms of resilient breeds and/or species. The application of omics to tropical animal production is still residual in the currently available literature. With this review, we aim to summarize the most notable results in the field whilst encouraging further research to deal with the future challenges that animal production in the tropics will need to face.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| | - Ahmed A K Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Ana C M Vitor
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, Lisboa, Portugal
| | - Anastasio Argüello
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Cristina T Moncau
- FZEA - Faculty of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte - 225, 13635-900 Pirassununga, SP, Brazil
| | - Edson M Santos
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, Brazil
| | - Gerardo Caja
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Juliana S de Oliveira
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, Brazil
| | - Júlio C C Balieiro
- FMVZ - School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte - 225, 13635-900 Pirassununga, SP, Brazil
| | | | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences Agricultural Research Organization/Volcani Center, Rishon Lezion 7505101, Israel
| | - Mirele D Poleti
- FZEA - Faculty of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte - 225, 13635-900 Pirassununga, SP, Brazil
| | - Noemi Castro
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Susana P Alves
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, Lisboa, Portugal
| | - André M Almeida
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|