1
|
Li X, Lian T, Su B, Liu H, Wang Y, Wu X, He J, Wang Y, Xu Y, Yang S, Li Y. Construction of a physiologically based pharmacokinetic model of paclobutrazol and exposure estimation in the human body. Toxicology 2024; 505:153841. [PMID: 38796053 DOI: 10.1016/j.tox.2024.153841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Paclobutrazol (PBZ) is a plant growth regulator that can delay plant growth and improve plant resistance and yield. Although it has been widely used in the growth of medicinal plants, human beings may take it by taking traditional Chinese medicine. There are no published studies on PBZ exposure in humans or standardized limits for PBZ in medicinal plants. We measured the solubility, oil-water partition coefficient (logP), and pharmacokinetics of PBZ in rats and established a physiologically based pharmacokinetic (PBPK) model of PBZ in rats. This was followed by extrapolation to healthy Chinese adult males as a theoretical foundation for future risk assessment of PBZ. The results showed that PBZ had low solubility and high fat solubility. Pharmacokinetic experiments showed that PBZ was absorbed rapidly but eliminated slowly in rats. On this basis, the rat PBPK model was successfully constructed and extrapolated to healthy Chinese adult males to predict the plasma concentration-time curve and exposure of PBZ in humans. The construction of the PBPK model of PBZ in this study facilitates the determination of the standard formulation limits and risk assessment of PBZ residues in medicinal plants.
Collapse
Affiliation(s)
- Xiaomeng Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Tingting Lian
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Buda Su
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Hui Liu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Xiaoyan Wu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Junjie He
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yue Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yanyan Xu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Shenshen Yang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Yang D, Zhu Z, Yao Q, Chen C, Chen F, Gu L, Jiang Y, Chen L, Zhang J, Wu J, Gao X, Wang J, Li G, Zhao Y. ccTCM: A quantitative component and compound platform for promoting the research of traditional Chinese medicine. Comput Struct Biotechnol J 2023; 21:5807-5817. [PMID: 38213899 PMCID: PMC10781882 DOI: 10.1016/j.csbj.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Traditional Chinese medicine (TCM) databases play a vital role in bridging the gap between TCM and modern medicine, as well as in promoting the popularity of TCM. Elucidating the bioactive ingredients of Chinese medicinal materials is key to TCM modernization and new drug discovery. However, one drawback of current TCM databases is the lack of quantitative data on the constituents of Chinese medicinal materials. Herein, we present ccTCM, a web-based platform designed to provide a component and compound-content-based resource on TCM and analysis services for medical experts. In terms of design features, ccTCM combines resource distribution, similarity analysis, and molecular-mechanism analysis to accelerate the discovery of bioactive ingredients in TCM. ccTCM contains 273 Chinese medicinal materials commonly used in clinical settings, covering 29 functional classifications. By searching and comparing, we finally adopted 2043 studies, from which we collected the compounds contained in each TCM with content greater than 0.001 %, and a total of 1449 were extracted. Subsequently, we collected 40,767 compound-target pairs by integrating multiple databases. Taken together, ccTCM is a versatile platform that can be used by TCM scientists to perform scientific and clinical TCM studies based on quantified ingredients of Chinese medicinal materials. ccTCM is freely accessible at http://www.cctcm.org.cn.
Collapse
Affiliation(s)
- Dongqing Yang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuihua Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Gu
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yucui Jiang
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyuan Zhang
- Department of Treatise on Febrile Diseases, School of Traditional Chinese Medicine & Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Wu
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junqin Wang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guochun Li
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Hu Q, Lan L, Li W, Zhou H, Pan H, Yuan J, Ji S, Miao S. Low-Temperature Cleanup Followed by Dispersive Solid-Phase Extraction for Determination of Nine Polar Plant Growth Regulators in Herbal Matrices Using Liquid Chromatography-Tandem Mass Spectrometry. Chromatographia 2023; 86:483-495. [PMID: 37255950 PMCID: PMC10097522 DOI: 10.1007/s10337-023-04254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Polar plant growth regulators, used alone or doped in fertilizers, are most effective and widely utilized plant growth regulators (PGRs) in agriculture, which play important roles in mediating the yield and quality of crops and foodstuffs. The application scope has been extended to herbal medicines in the past 2 decades and relevant study is inadequate. The aim of this study is to establish a QuPPe-based extraction method containing low-temperature and d-SPE cleanup procedure followed by the detection on a selective multiresidue ultrahigh-performance liquid chromatography - triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) in three herbal matrices. This simple, accurate, versatile and robust method was verified according to the validation criteria of the SANTE/12682/2019 guideline document. The analytical range was from 2.5 to 200 μg/L, and the average recoveries were in the range of 64.6-117.8% (n = 6). The optimized method was applied to 135 herbal medicines thereof. Result showed that the detection frequency of chlormequat was the highest in the investigated PGRs, with the positive rate of 15.6%. Improvement of the detection method for polar PGRs will enrich the coverage of PGRs, which is conducive to safeguard public health and ensure drug safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10337-023-04254-3.
Collapse
Affiliation(s)
- Qing Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203 People’s Republic of China
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Lan Lan
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Wenting Li
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Heng Zhou
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Huiqin Pan
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Shen Ji
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203 People’s Republic of China
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Shui Miao
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
4
|
Lan L, Huang W, Zhou H, Yuan J, Miao S, Mao X, Hu Q, Ji S. Integrated Metabolome and Lipidome Strategy to Reveal the Action Pattern of Paclobutrazol, a Plant Growth Retardant, in Varying the Chemical Constituents of Platycodon Root. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206902. [PMID: 36296498 PMCID: PMC9609321 DOI: 10.3390/molecules27206902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
Platycodon root, a medicinal food homology species which has been used in Asian countries for hundreds of years, is now widely cultivated in China. Treatment with paclobutrazol, a typical plant growth retardant, has raised uncertainties regarding the quality of Platycodon root, which have been rarely investigated. In the present study, metabolomic and lipidomic differences were revealed by ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS). A significant decrease of platycodigenin-type saponins was observed in the paclobutrazol-treated sample. Carrying out a comprehensive quantitative analysis, the contents of total saponins and saccharides were determined to illustrate the mode of action of paclobutrazol on Platycodon root. This study demonstrated an exemplary research model in explaining how the exogenous matter influences the chemical properties of medicinal plants, and therefore might provide insights into the reasonable application of plant growth regulators.
Collapse
Affiliation(s)
- Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Weizhen Huang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
- Correspondence: ; Tel.: +86-18001678046
| |
Collapse
|
5
|
Liu H, Xu Y, Wang Y, Liu C, Chen J, Fan S, Xie L, Dong Y, Chen S, Zhou W, Li Y. Study on endocrine disruption effect of paclobutrazol and uniconazole on the thyroid of male and female rats based on lipidomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113386. [PMID: 35286959 DOI: 10.1016/j.ecoenv.2022.113386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The present study investigated the effects of paclobutrazol and uniconazole on thyroid endocrine system in rats. Lipidomic analysis was performed to obtain the biomarkers of thyroid endocrine disruption induced by paclobutrazol and uniconazole. Network pharmacology was further used to discover potential targets of biomarkers related to drugs and diseases. After paclobutrazol and uniconazole administration, seven and four common biomarkers related to thyroid endocrine disruption for female and male rats were obtained, respectively. Paclobutrazol and uniconazole significantly increased the biomarker levels of PG (12:0/15:0), PS (14:0/16:0), PA (20:1/15:0) and PG (13:0/17:0) in both sexes of rats. Exposure to paclobutrazol additionally caused a significant decrease of PG (22:6/20:2), PE (24:1/18:1) and PE (24:0/18:0) in female rats, while an increase in male rats. Changes of the common biomarkers for paclobutrazol and uniconazole revealed similar endocrine disruption effect, which was higher in the females. Network pharmacology and KEGG pathway analysis indicated that the thyroid endocrine disrupting effects of paclobutrazol and uniconazole may be related to V-akt murine thymoma viral oncogene homolog (Akts), mitogen-activated protein kinase (MAPKs), epidermal growth factor receptor (EGFR), Insulin-like growth factor (IGF-1), IGF-IR and V-Raf murine sarcoma viral oncogene homolog B1 (BRAF). The results demonstrated that paclobutrazol and uniconazole could cause thyroid endocrine disorders in male and female rats, which were sex-specific, thus highlighting the importance of safe and effective application of these plant growth regulators.
Collapse
Affiliation(s)
- Hui Liu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yanyan Xu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Chunyang Liu
- National Aquatic Germplasm Resources Conservation Area Management Office in Qinhuangdao, Daihe Fishing Port, West Beach Road, Beidaihe District, Qinhuangdao, Hebei 066000, China
| | - Jun Chen
- Animal Health Supervision Office in Qinhuangdao, No. 52, Guancheng South Road, Shanhaiguan District, Qinhuangdao, Hebei 066000, China
| | - Simiao Fan
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Lijuan Xie
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yaqian Dong
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Siyu Chen
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Wenjie Zhou
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|