1
|
Nayak SS, Rajawat D, Jain K, Sharma A, Gondro C, Tarafdar A, Dutt T, Panigrahi M. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Mamm Genome 2024; 35:577-599. [PMID: 39397083 DOI: 10.1007/s00335-024-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| |
Collapse
|
2
|
Gudra D, Valdovska A, Jonkus D, Kairisa D, Galina D, Ustinova M, Viksne K, Fridmanis D, Kalnina I. Genetic characterization of the Latvian local goat breed and genetic traits associated with somatic cell count. Animal 2024; 18:101154. [PMID: 38703755 DOI: 10.1016/j.animal.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024] Open
Abstract
The Latvian local goat (LVK) breed represents the only native domestic goat breed in Latvia, but its limited population places it within the endangered category. However, the LVK breed has not yet undergone a comprehensive genetic characterization. Therefore, we completed whole genome sequencing to reveal the genetic foundation of the LVK breed while identifying genetic traits linked to the somatic cell count (SCC) levels. The study included 40 genomes of LVK goats sequenced to acquire at least 35x or 10x coverage. A Principal component analysis, a genetic distance tree, and an admixture analysis showed LVK's similarity to some European breeds, such as Finnish Landrace, Alpine, and Saanen, which aligns with the breed's history. An analysis of genome-wide heterozygosity, nucleotide diversity, and LD analysis indicated that the LVK population exhibits substantial levels of genetic diversity. LVK genome was dominated by short runs of homozygosity (ROHs, ≤ 500 kb) with a median length of 25 kb. With FROH 2.49%, average inbreeding levels were low; however, FROH ranged broadly from 0.13 to 12.2%. With the exception of one pure-blood breeding buck exhibiting FROH of 9.3% and FSNP of 8.5%, animals with at least 66% LVK ancestry showed moderate or no inbreeding. Overall, this study demonstrated that the LVK goats can be differentiated from imported breeds, although the population has a complex genetic structure. We were able to identify potential genetic traits associated with SCC levels, although the kinship of the animals and the heterogenic substructure of the population might have largely influenced the association analysis. We identified 26 genetic variants associated with SCC levels, which included the potentially relevant SNP rs662053371 in the OSBPL8 gene, indicating a potential signal linked to lipid metabolism in goats. To conclude, these findings present valuable insight into the genetic structure of the LVK breed for the conservation of local genetic resources.
Collapse
Affiliation(s)
- D Gudra
- Human Genetics and Disease Mechanisms Department, Latvian Biomedical Research and Study Centre, Rātsupītes iela 1 K-1, LV-1067 Riga, Latvia
| | - A Valdovska
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Helmana iela 8 K, LV-3004 Jelgava, Latvia; Scientific Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, Lielā iela 2, LV-3001 Jelgava, Latvia.
| | - D Jonkus
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, Lielā iela 2, LV-3001 Jelgava, Latvia
| | - D Kairisa
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, Lielā iela 2, LV-3001 Jelgava, Latvia
| | - D Galina
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Helmana iela 8 K, LV-3004 Jelgava, Latvia; Scientific Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, Lielā iela 2, LV-3001 Jelgava, Latvia
| | - M Ustinova
- Human Genetics and Disease Mechanisms Department, Latvian Biomedical Research and Study Centre, Rātsupītes iela 1 K-1, LV-1067 Riga, Latvia
| | - K Viksne
- Human Genetics and Disease Mechanisms Department, Latvian Biomedical Research and Study Centre, Rātsupītes iela 1 K-1, LV-1067 Riga, Latvia
| | - D Fridmanis
- Human Genetics and Disease Mechanisms Department, Latvian Biomedical Research and Study Centre, Rātsupītes iela 1 K-1, LV-1067 Riga, Latvia
| | - I Kalnina
- Human Genetics and Disease Mechanisms Department, Latvian Biomedical Research and Study Centre, Rātsupītes iela 1 K-1, LV-1067 Riga, Latvia
| |
Collapse
|
3
|
Gu B, Sun R, Fang X, Zhang J, Zhao Z, Huang D, Zhao Y, Zhao Y. Genome-Wide Association Study of Body Conformation Traits by Whole Genome Sequencing in Dazu Black Goats. Animals (Basel) 2022; 12:ani12050548. [PMID: 35268118 PMCID: PMC8908837 DOI: 10.3390/ani12050548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Body conformation traits are economically important in the goat meat industry. Good growth performance in goats, including an accelerated growth rate, can improve carcass weight and meat yield. The identification of genetic variants associated with these traits provides a basis for the genetic improvement of growth performance. In this study, we measured six body conformation traits, including body height, body length, cannon circumference, chest depth, chest width, and heart girth. By a genome-wide association study of a Chinese meat goat breed, 53 significant single nucleotide polymorphisms and 42 candidate genes associated with these traits were detected. These findings improve our understanding of the genetic basis of body conformation traits in goats. Abstract Identifying associations between genetic markers and economic traits has practical benefits for the meat goat industry. To better understand the genomic regions and biological pathways contributing to body conformation traits of meat goats, a genome-wide association study was performed using Dazu black goats (DBGs), a Chinese indigenous goat breed. In particular, 150 DBGs were genotyped by whole-genome sequencing, and six body conformation traits, including body height (BH), body length (BL), cannon circumference (CC), chest depth (CD), chest width (CW), and heart girth (HG), were examined. In total, 53 potential SNPs were associated with these body conformation traits. A bioinformatics analysis was performed to evaluate the genes located close to the significant SNPs. Finally, 42 candidate genes (e.g., PSTPIP2, C7orf57, CCL19, FGF9, SGCG, FIGN, and SIPA1L) were identified as components of the genetic architecture underlying body conformation traits. Our results provide useful biological information for the improvement of growth performance and have practical applications for genomic selection in goats.
Collapse
Affiliation(s)
- Bowen Gu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Ruifan Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Xingqiang Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Deli Huang
- Tengda Animal Husbandry Co., Ltd., Chongqing 402360, China;
| | - Yuanping Zhao
- Dazu County Agriculture and Rural Committee, Chongqing 402360, China;
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
- Correspondence:
| |
Collapse
|