1
|
Xie F, Xie M, Yang Y, Ao W, Zhao T, Liu N, Chen B, Kang W, Xiao W, Gu J. Pathway network-based quantitative modeling of the time-dependent and dose-response anti-inflammatory effect of Reduning Injection. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116216. [PMID: 36736714 DOI: 10.1016/j.jep.2023.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has extensive healing effects on inflammatory diseases with few side effects. Reduning injection (RDNI), a TCM prescription composed of Lonicera japonica Thunb., Gardenia jasminoides Ellis. and Artemisia annua L., is wildly used for treating inflammatory diseases. However, the mechanism of action of RDNI, like most TCM prescriptions, is unclear due to the complexity of relationships between components and their curative effects. AIM OF THE STUDY To develop a universal systems pharmacology protocol for mechanism modeling of TCM and apply it to reveal the real-time anti-inflammatory effect of Reduning Injection. MATERIALS AND METHODS Combined with database mining and references, a regulatory mechanism network of inflammation was constructed. A quantitative model was established afterwards by integrating pharmacokinetic data and two network parameters, namely Network Efficiency and Network Flux. The time-dependent and dose-response relationship of RDNI on the regulation of inflammation was then quantitatively evaluated. ELISA tests were performed to verify the reliability of the model. RESULTS Three cytokines, namely IL-1β, IL-6 and TNF-α were screened out to be markers for evaluation of the anti-inflammatory effect of RDNI. An HPLC method for the simultaneous determination of 10 RDNI compounds in SD rat plasma was established and then applied to pharmacokinetic studies. Based on compound activity and pharmacokinetic data, the time-dependent effect of RDNI were quantitatively predicted by the pathway network-based modeling procedure. CONCLUSIONS The quantitative model established in this work was successfully applied to predict a TCM prescription's real-time dynamic healing effect after administration. It is qualified to provide novel insights into the time-dependent and dose-effect relationship of drugs in an intricate biological system and new strategies for investigating the detailed molecular mechanisms of TCM.
Collapse
Affiliation(s)
- Fuda Xie
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Mingxiang Xie
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yibing Yang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Weizhen Ao
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; iHuman Institute, School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| | - Tingxiu Zhao
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China.
| | - Jiangyong Gu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Zhu X, Meng X, Lei N, Shen Z, Li X, Song H, Feng Q, Guo Y. Chinese herbal injections plus Western Medicine on inflammatory factors for patients with acute exacerbation of chronic obstructive pulmonary disease: a systematic review and network meta-analysis. J Thorac Dis 2023; 15:1901-1918. [PMID: 37197502 PMCID: PMC10183547 DOI: 10.21037/jtd-23-402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Background Chinese herbal injections (CHIs) are commonly prescribed in China as adjuvant therapy for acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, evidence supporting the effect of CHIs on inflammatory factors for patients with AECOPD is insufficient, posing a challenge for clinicians to choose the optimal CHIs for AECOPD. This network meta-analysis (NMA) aimed to compare the effectiveness of several CHIs combined with Western Medicine (WM) and WM alone on the inflammatory factors in AECOPD. Methods Randomized controlled trials (RCTs) on different CHIs for treating AECOPD were thoroughly searched from several electronic databases up to August 2022. The quality assessment of the included RCTs was conducted according to the Cochrane risk of bias tool. Bayesian network meta-analyses were designed to assess the effectiveness of different CHIs. Systematic Review Registration CRD42022323996. Results A total of 94 eligible RCTs involving 7,948 patients were enrolled in this study. The NMA results showed that using Xuebijing (XBJ), Reduning (RDN), Tanreqing (TRQ), and Xiyanping (XYP) injections combined with WM significantly improved treatment effects compared to using WM alone. XBJ + WM and TRQ + WM significantly changed the level of C-reactive protein (CRP), white blood cells, percentage of neutrophils, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). TRQ + WM showed the most significant effect in reducing the level of procalcitonin. XYP + WM and RDN + WM could reduce the level of white blood cells and the percentage of neutrophils. A total of 12 studies reported adverse reactions in detail, and 19 studies demonstrated no significant adverse reactions. Conclusions This NMA showed that using CHIs combined with WM could significantly reduce the level of inflammatory factors in AECOPD. A combination of TRQ and WM may be a relatively prior adjuvant therapy option for AECOPD treatment considering its effects in reducing the levels of the anti-inflammatory mediators.
Collapse
Affiliation(s)
- Xiuying Zhu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangbo Meng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Lei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengnan Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongfei Song
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinling Guo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Jia-Xing W, Chao-Yi L, Wei-Ya C, Yi-Jun C, Chun-Yu L, Fei-Fei Y, Yong-Hong L. The pulmonary biopharmaceutics and anti-inflammatory effects after intratracheal and intravenous administration of Re-Du-Ning injection. Biomed Pharmacother 2023; 160:114335. [PMID: 36724641 DOI: 10.1016/j.biopha.2023.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Re-Du-Ning injection (RDN) is a renowned heat-clearing traditional Chinese medicine for the treatment of respiratory diseases owing to its anti-inflammatory effects. However, very little is known about the pulmonary distribution and lung exposure-efficacy relationships. This study aimed to investigate the pulmonary distribution and biopharmaceutics concerning lung penetrability and affinity and the local anti-inflammatory effects after intravenous and pulmonary administration of RDN. METHODS Two iridoids and seven phenolic acid components were selected as the chemical markers in RDN. The in vitro pulmonary distribution and biopharmaceutics were conducted by evaluating the binding and disassociation kinetics of chemical markers in lung tissue explants whereas the in vivo evaluation was performed by determining the time-dependent concentrations of chemical markers in plasma, lung epithelial lining fluid (ELF), lung tissues and immune cells in the ELF after intratracheal and intravenous administrations of RDN. The inhibitory effects on tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production were used to evaluate the anti-inflammatory effect of RDN on lung tissues in vitro and on mice with LPS-induced lung inflammation. RESULTS The chemical markers of RDN exhibited excellent lung penetrability but poor lung affinity in vitro and in vivo. After intravenous administration, the chemical markers appeared to rapidly penetrate through the lung tissue to reach the ELF, leading to markedly higher drug exposure to ELF and immune cells in the ELF than to lung tissues. Compared to intravenous injection, the intratracheal instillation of RDN increased drug exposure to lung tissue and immune cells in the ELF by up to > 80-fold, leading to improved anti-inflammatory potency and prolonged duration of action. CONCLUSION The drug exposure to immune cells in the ELF was correlated with the lung-targeted anti-inflammatory effects of RDN and pulmonary delivery has the potential to replace intravenous injection of RDN for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Wei Jia-Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Li Chao-Yi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Chen Wei-Ya
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Cong Yi-Jun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Liu Chun-Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yang Fei-Fei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Liao Yong-Hong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
4
|
Huang P, Li Y, Huang B, Zhao S, Chen L, Guan H, Chen Y, Feng Y, Huang X, Deng Y, Lei S, Wu Q, Zhang H, Zeng Z, Zeng L, Chen B. A Five-Dimensional Network Meta-Analysis of Chinese Herbal Injections for Treating Acute Tonsillitis Combined With Western Medicine. Front Pharmacol 2022; 13:888073. [PMID: 35784692 PMCID: PMC9247210 DOI: 10.3389/fphar.2022.888073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute tonsillitis has high morbidity. Chinese herbal injections (CHIs) were reported to be useful in treating acute tonsillitis and might reduce the probability of antibiotic resistance. Nevertheless, the optimal strategy for combining CHIs with western medicine (WM) to treat acute tonsillitis remains unclear. Methods: We retrieved data from the following databases with retrieval time from inception to 11 January 2022: PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang Database, Weipu Journal Database, and Chinese Biomedical Literature Database. Version 2 of the Cochrane risk-of-bias tool (ROB2) was used for evaluating the quality of the included studies. R 4.1.2, STATA 14.0, and Python 3.10.4 were employed for network meta-analysis, with 5-dimensional K-means cluster analysis, meta-regression analyses, sensitivity analyses, and subgroup analyses. Results: A total of 110 randomized controlled trials including 12,152 patients were included. All the studies were rated as “high risk” and “some concerns”. In terms of improving clinical effectiveness rate, Qingkailing injection + WM ranked ahead of other interventions (89.51%). Regarding reducing antipyretic time, Reduning injection + WM had the highest-ranking probability (68.48%). As for shortening sore throat relief time, Shuanghuanglian injection + WM ranked first (76.82%). Concerning shortening red and swollen tonsils relief time, Yanhuning injection + WM possessed the highest-ranking probability (89.17%). In terms of reducing tonsillar exudate relief time, Xuebijing injection + WM ranked ahead of the other interventions (94.82%). Additionally, the results of the cluster analysis suggested that Xuebijing injection + WM, Reduning injection + WM, and Yanhuning injection + WM were probably the best interventions. Furthermore, adverse drug reactions rate of Xuebijing injection + WM, Reduning injection + WM, Yanhuning injection + WM, Qingkailing injection + WM, and Shuanghuanglian injection + WM were individually 0.00%, 3.11%, 3.08%, 4.29%, and 4.62%. Conclusions: CHIs + WM have a better impact on patients with acute tonsillitis than WM alone. Xuebijing injection, Reduning injection, and Yanhuning injection might have potential advantages in treating the disease. Concerning adverse drug reactions, Xuebijing injection is presumably the optimal CHI. More high-quality studies are needed to further confirm our findings. Systematic Review Registration: CRD42022303243; URL= https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=303243
Collapse
Affiliation(s)
- Peiying Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Yin Li
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bixuan Huang
- Department of Nursing, Hubei University of Arts and Science, Xiangyang, China
| | - Shuai Zhao
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Hansu Guan
- Emergency Department of the Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Chen
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yuchao Feng
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yi Deng
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Sisi Lei
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Qihua Wu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Haobo Zhang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Zhongyi Zeng
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Linsheng Zeng
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Bojun Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
- *Correspondence: Bojun Chen,
| |
Collapse
|
5
|
Li Z, Xie L, Wang H, Wang S, Wu J. Clinical Observation of Reduning Combined with Recombinant Human Interferon α-2b in the Treatment of Children with Viral Pneumonia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1739561. [PMID: 35747380 PMCID: PMC9213134 DOI: 10.1155/2022/1739561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Purpose To observe the clinical efficacy of Reduning injection combined with recombinant human interferon α-2b spray in the treatment of children with viral pneumonia. Methods A total of 200 children with viral pneumonia over 2 years old who were admitted to the Pediatrics Department of the Cangzhou Central Hospital from September 2018 to November 2020 were recruited and randomized into the control group and observation group at a ratio of 1 : 1, with 100 cases in each group. The children in the control group were given recombinant human interferon α-2b spray, and the children in the observation group were given Reduning injection on the basis of the control group. The clinical symptoms and signs, clinical efficacy, levels of inflammatory mediators, and drug safety were compared between the two groups. Results The t-test results showed that the disappearance time of body temperature, respiratory rate, pulmonary rales, and cough in the observation group was significantly shorter than that in the control group. The chi-square revealed a significantly higher total effective rate in the observation group vs. the control group. After treatment, the levels of IL-1, IL-6, TNF-α, and CRP in the two groups were lower than the corresponding values before treatment, and greater reduction was observed in the observation group in relative to the control group (both p < 0.05). The two groups have a similar safety profile. Conclusion Reduning combined with recombinant human interferon α-2b produces a remarkable effect in the treatment of children with viral pneumonia, and it ameliorates clinical symptoms and reduces inflammatory response with a good safety profile.
Collapse
Affiliation(s)
- Zhuangzhuang Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Lingling Xie
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - He Wang
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Shugen Wang
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Jinguang Wu
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| |
Collapse
|
6
|
Wu HB, Xiao YG, Chen JS, Qiu ZK. The potential mechanism of Bupleurum against anxiety was predicted by network pharmacology study and molecular docking. Metab Brain Dis 2022; 37:1609-1639. [PMID: 35366129 DOI: 10.1007/s11011-022-00970-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/21/2022] [Indexed: 01/20/2023]
Abstract
Bupleurum chinense DC. (Chaihu) is a traditional Chinese medicine (TCM) used in the treatment of anxiety. But the anxiolytic mechanisms of bupleurum are still unclear. Therefore, this unknown is predicted by network pharmacology study with molecular docking in the present study. The components of bupleurum were obtained from the databases. Genes associated with components and disease were also provided by databases. Overlapping genes between components and disease were analyzed. The network of medicine-components-targets-disease was constructed, visualized, and analyzed. Protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG) and molecular docking were conducted to predict the potential mechanisms of bupleurum on anxiety. A total of 9 bioactive components derived from bupleurum with 80 target genes were involved in anxiety. Neurotransmitter receptor activity, G protein-coupled amine receptor activity, regulation of blood circulation, neuroactive ligand-receptor interaction, calcium signaling pathway and salivary secretion may play significant roles in the anxiolytic of bupleurum. Molecular docking implicated that ACHE and MAOA showed high affinity for stigmasterol. Based on network pharmacology study with molecular docking, multi-component-multi-target-multi-pathway action mode of bupleurum on anxiety was elaborated. Stigmasterol might be the core bioactive component, while ACHE and MAOA might be the core target genes in the pharmacological profile of bupleurum on anxiety.
Collapse
Affiliation(s)
- Han-Biao Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Gang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ji-Sheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-Kun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
7
|
Hu H, Ji Z, Qiang X, Liu S, Sheng X, Chen Z, Liu F, Wang H, Zhang J. Chinese Medical Injections for Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Network Meta-analysis. Int J Chron Obstruct Pulmon Dis 2021; 16:3363-3386. [PMID: 34949918 PMCID: PMC8691136 DOI: 10.2147/copd.s335579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/14/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The World Health Organization has indicated that chronic obstructive pulmonary disease (COPD) may become the third leading cause of death by 2030. Acute exacerbation of COPD (AECOPD) is an important process in clinical treatment. Recent studies have shown that Chinese medical injections (CMI) are effective against AECOPD, but the effective difference among different CMIs remains unclear. The aim of this network meta-analysis (NMA) is to compare the therapeutic effect of various CMIs. METHODS We conducted an overall, systematic literature search in the China National Knowledge Infrastructure, Wanfang, VIP, SinoMed, PubMed, Embase, Cochrane Library, and Web of Science databases to retrieve randomized controlled trials (RCTs) of CMIs for AECOPD published up to January 2021. The Cochrane risk of bias tool was used to assess the risk of bias. Stata 13.1 and WinBUGS 14.3 were used for data analyses. RESULTS In total, 103 RCTs involving 8767 participants and 23 CMIs were included. The results indicated that among all treatments conventional Western medical therapy (WM) plus Dengzhanxixin injection (DZXX) led to the best improvement in the clinical efficacy and the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) (FEV1/FVC), with surface under the cumulative ranking curve (SUCRA)=80.47% and 98.55%, respectively. Moreover, Shenmai injection (SM) plus WM and Reduning injection (RDN) plus WM led to the best improvement in the FEV1 (SUCRA=80.18%) and the ratio of forced expiratory volume in one second to the predicted value (FEV1%, SUCRA=87.28%). Shengmai injection (SGM) plus WM led to the most considerable shortening in the length of hospital stay (SUCRA=94.70%). Cluster analysis revealed that WM+DZXX had the most favorable response for clinical efficacy and FEV1, as well as clinical efficacy and FEV1/FVC, WM+RDN had the most favorable response for clinical efficacy and FEV1%, WM+SGM had the most favorable response for clinical efficacy and length of hospital stay. CONCLUSION WM+DZXX, WM+RDN, and WM+SGM were noted to be the optimum treatment regimens for improving in clinical efficacy, FEV1, FEV1/FVC, FEV1% and reducing the hospital stay length of AECOPD patients. Considering the limitations this NMA may have, the current results warrant further verification via additional high-quality studies.
Collapse
Affiliation(s)
- Haiyin Hu
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhaochen Ji
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Xiaoyu Qiang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Shigang Liu
- Department of Respiratory Diseases, Guang’anmen Hospital, Beijing, People’s Republic of China
| | - Xiaodi Sheng
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhe Chen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Fanqi Liu
- Department of Cardiovascular Disease, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, People’s Republic of China
| | - Hui Wang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Junhua Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
8
|
Ye S, Zhong J, Huang J, Chen L, Yi L, Li X, Lv J, Miao J, Li H, Chen D, Li C. Protective effect of plastrum testudinis extract on dopaminergic neurons in a Parkinson's disease model through DNMT1 nuclear translocation and SNCA's methylation. Biomed Pharmacother 2021; 141:111832. [PMID: 34153844 DOI: 10.1016/j.biopha.2021.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022] Open
Abstract
The pathological characteristics of Parkinson's disease (PD) include dopaminergic neuron damage, specifically disorders caused by dopamine synthesis, in vivo. Plastrum testudinis extract (PTE) and its bioactive ingredient ethyl stearate (PubChem CID: 8122) were reported to be correlated with tyrosine hydroxylase (TH), which is a biomarker of dopaminergic neurons. This suggests that PTE and its small-molecule active ingredient ethyl stearate have potential for development as a therapeutic drug for PD. In this study, we treated 6-hydroxydopamine (6-OHDA)-induced model rats and PC12 cells with PTE. The mechanism of action of PTE and ethyl stearate was investigated by western blotting, bisulfite sequencing PCR (BSP), real-time PCR, immunofluorescence and siRNA transfection. PTE effectively upregulated the TH expression and downregulated the alpha-synuclein expression in both the substantia nigra and the striatum of the midbrain in a PD model rat. The PC12 cell model showed that both PTE and its active monomer ethyl stearate significantly promoted TH expression and blocked alpha-synuclein, agreeing with the in vivo results. BSP showed that PTE and ethyl stearate increased the methylation level of the Snca intron 1 region. These findings suggest that some of the protective effects of PTE on dopaminergic neurons are mediated by ethyl stearate. The mechanism of ethyl stearate may involve disrupting the abnormal aggregation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) with alpha-synuclein by releasing DNMT1, upregulating Snca intron 1 CpG island methylation, and ultimately, reducing the expression of alpha-synuclein.
Collapse
Affiliation(s)
- Sen Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Jun Zhong
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Jiapei Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Lichun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Lan Yi
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Xican Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Jianping Lv
- Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Jifei Miao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Caixia Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| |
Collapse
|