1
|
Zhang Y, Liu G, Huang L, He X, Su Y, Nie X, Mao Z, Xing X. SUN5 interacts with nuclear membrane LaminB1 and cytoskeletal GTPase Septin12 mediating the sperm head-and-tail junction. Mol Hum Reprod 2024; 30:gaae022. [PMID: 38870534 DOI: 10.1093/molehr/gaae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Acephalic spermatozoa syndrome (ASS) is a severe teratospermia with decaudated, decapitated, and malformed sperm, resulting in male infertility. Nuclear envelope protein SUN5 localizes to the junction between the sperm head and tail. Mutations in the SUN5 gene have been identified most frequently (33-47%) in ASS cases, and its molecular mechanism of action is yet to be explored. In the present study, we generated Sun5 knockout mice, which presented the phenotype of ASS. Nuclear membrane protein LaminB1 and cytoskeletal GTPases Septin12 and Septin2 were identified as potential partners for interacting with SUN5 by immunoprecipitation-mass spectrometry in mouse testis. Further studies demonstrated that SUN5 connected the nucleus by interacting with LaminB1 and connected the proximal centriole by interacting with Septin12. The binding between SUN5 and Septin12 promoted their aggregation together in the sperm neck. The disruption of the LaminB1/SUN5/Septin12 complex by Sun5 deficiency caused separation of the Septin12-proximal centriole from the nucleus, leading to the breakage of the head-to-tail junction. Collectively, these data provide new insights into the pathogenesis of ASS caused by SUN5 deficiency.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiyi He
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuyan Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Deng TQ, Xie YL, Pu JB, Xuan J, Li XM. Compound heterozygous mutations in PMFBP1 cause acephalic spermatozoa syndrome: A case report. World J Clin Cases 2022; 10:12761-12767. [PMID: 36579083 PMCID: PMC9791525 DOI: 10.12998/wjcc.v10.i34.12761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Acephalic spermatozoa syndrome (ASS) is an extremely rare form of severe teratozoospermia, where in most of the sperm either appear to lack heads or have disconnected or poorly connected heads and tails.
CASE SUMMARY We reported the case of a male patient with secondary infertility whose sperm showed typical ASS upon morphological analysis. Whole-exome sequencing was performed on the patient’s peripheral blood, which revealed two heterozygous variants of the PMFBP1 gene: PMFBP1c.414+1G>T (p.?) and PMFBP1c.393del (p.C132Afs*3).
CONCLUSION It is speculated that the compound homozygous mutation of PMFBP1 may be the cause of ASS. We conducted a literature review in order to provide the basis for genetic counseling and clinical diagnosis of patients with ASS.
Collapse
Affiliation(s)
- Tian-Qin Deng
- Reproductive Medical Center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong Province, China
| | - Yu-Li Xie
- Newborn Screening Center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong Province, China
| | - Jiang-Bo Pu
- Reproductive Medical Center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong Province, China
| | - Jiang Xuan
- Reproductive Medical Center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong Province, China
| | - Xue-Mei Li
- Reproductive Medical Center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong Province, China
| |
Collapse
|
3
|
Nie H, Tang Y, Zhang X, Tan Y, Qin W. Novel mutations of PMFBP1 in a man with acephalic spermatozoa defects. Mol Genet Genomic Med 2022; 10:e2020. [PMID: 35860846 PMCID: PMC9482405 DOI: 10.1002/mgg3.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/23/2021] [Accepted: 07/08/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Acephalic spermatozoa (AS) is a serious but rare reproductive genetic disorder that causes infertility in men. To date, only a few genes associated with AS defects have been identified, including the polyamine modulated factor 1 binding protein 1 (PMFBP1) gene. Consistent with this, PMFBP1 localizes to the head-neck connection, which bridges the implantation fossa and basal body. METHODS A male patient was diagnosed as having an AS defect. Blood samples from all family members and a sample of the patient's semen were collected to determine the genetic causes of his infertility. RESULTS Compound heterozygote mutation in the PMFBP1 gene, which is associated with AS defects in the present case: two loss-of-function mutations, with one a nonsense mutation c.361C > T p.Gln121Ter, and another a splice donor mutation c.414 + 1G > T. The current study, together with previous studies, suggests that the nonsense mutation is responsible for a truncated PMFBP1 protein during its formation; a splice donor mutation c.414 + 1G > T might lead to new open reading frames, from which the dysfunction of an abnormal PMFBP1 protein might be predicted. Additionally, the expression of outer dense fiber 1 (ODF1) and ODF2 proteins has been experimentally shown to be regulated by the truncated PMFBP1 protein. CONCLUSION We herein present a case with AS defects associated with heterozygote mutations of PMFBP1, which have been shown to be rare and pathogenic; the association with an AS defect is a monogenic disorder with a recessive inherited pattern in the patient's family.
Collapse
Affiliation(s)
- Hua Nie
- NHC Key Laboratory of Male Reproduction and GeneticsGuangzhouChina
- Central Laboratory of Guangdong Provincial Reproductive Science InstituteGuangzhouChina
- Central Laboratory of Guangdong Provincial Fertility HospitalGuangzhouChina
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and GeneticsGuangzhouChina
- Central Laboratory of Guangdong Provincial Reproductive Science InstituteGuangzhouChina
- Central Laboratory of Guangdong Provincial Fertility HospitalGuangzhouChina
| | | | - Yuqiu Tan
- Zhanjiang Jiuhe HospitalZhanjiangChina
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and GeneticsGuangzhouChina
- Central Laboratory of Guangdong Provincial Reproductive Science InstituteGuangzhouChina
- Central Laboratory of Guangdong Provincial Fertility HospitalGuangzhouChina
| |
Collapse
|
4
|
Ying LJ, Yu L, Yang T, Wu YB, Xu JY, Jia YL, Zheng Y, Li F. Semen parameters are seriously affected in acephalic spermatozoa syndrome. Basic Clin Androl 2022; 32:20. [PMID: 36028792 PMCID: PMC9413908 DOI: 10.1186/s12610-022-00170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have reported that some patients with headless spermatozoa have poor semen quality, but there has been no published systematic analysis of semen quality in patients with different proportions of headless spermatozoa in semen. We aimed to explore the association of acephalic spermatozoa syndrome and semen quality in men with distinct proportions of headless spermatozoa. MATERIAL AND METHODS Semen parameter values in patients for whom headless spermatozoa were found in the ejaculates was studied and compared to that of 413 age-matched prenatal examination patients. All semen samples were analyzed following the same methodology in a single laboratory. RESULTS All semen parameter values except semen volume were negatively (P < 0.05) correlated with the proportion of headless spermatozoa. The semen samples were divided into four groups on the basis of the proportion of headless spermatozoa (PHS) as follows: 0 < PHS ≤ 5% (n = 172, Group A1); 5 < PHS ≤ 10% (n = 76, Group A2); 10 < PHS ≤ 20% (n = 71, Group B); and PHS > 20% (n = 71, Group C). In Group A1, only one semen parameter value (progressive motility) was lower than those of the control group, but in Group A2, this increased to five (sperm vitality, normal sperm morphology, sperm motility, VCL (curvilinear velocity) and ALH (amplitude of lateral head displacement)). Worse still, all semen parameter values were significantly lower in Group B and Group C than in the control group (P < 0.05). CONCLUSIONS Semen samples containing headless spermatozoa tend to have lower quality than samples without headless spermatozoa. Increases in the proportion of headless spermatozoa in semen are associated with decreased semen quality. We suggest that headless spermatozoa should be seriously assessed and accurately counted in semen analysis, especially for ejaculate in which the proportion of headless spermatozoa exceeds 5%.
Collapse
Affiliation(s)
- Li-Juan Ying
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Lin Yu
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Ying-Bi Wu
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Jin-Yan Xu
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Ye-Lin Jia
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Yan Zheng
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China.
| |
Collapse
|
5
|
Moretti E, Signorini C, Noto D, Corsaro R, Collodel G. The relevance of sperm morphology in male infertility. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:945351. [PMID: 36303645 PMCID: PMC9580829 DOI: 10.3389/frph.2022.945351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
This brief report concerns the role of human sperm morphology assessment in different fields of male infertility: basic research, genetics, assisted reproduction technologies, oxidative stress. One of the best methods in studying sperm morphology is transmission electron microscopy (TEM) that enables defining the concept of sperm pathology and classifying alterations in non-systematic and systematic. Non-systematic sperm defects affect head and tail in variable ratio, whereas the rare systematic defects are characterized by a particular anomaly that marks most sperm of an ejaculate. TEM analysis and fluorescence in situ hybridization represent outstanding methods in the study of sperm morphology and cytogenetic in patients with altered karyotype characterizing their semen quality before intracytoplasmic sperm injection. In recent years, the genetic investigations on systematic sperm defects, made extraordinary progress identifying candidate genes whose mutations induce morphological sperm anomalies. The question if sperm morphology has an impact on assisted fertilization outcome is debated. Nowadays, oxidative stress represents one of the most important causes of altered sperm morphology and function and can be analyzed from two points of view: 1) spermatozoa with cytoplasmic residue produce reactive oxygen species, 2) the pathologies with inflammatory/oxidative stress background cause morphological alterations. Finally, sperm morphology is also considered an important endpoint in in vitro experiments where toxic substances, drugs, antioxidants are tested. We think that the field of sperm morphology is far from being exhausted and needs other research. This parameter can be still considered a valuable indicator of sperm dysfunction both in basic and clinical research.
Collapse
|
6
|
Zhang Y, Liu C, Wu B, Li L, Li W, Yuan L. The missing linker between SUN5 and PMFBP1 in sperm head-tail coupling apparatus. Nat Commun 2021; 12:4926. [PMID: 34389728 PMCID: PMC8363609 DOI: 10.1038/s41467-021-25227-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The sperm head-to-tail coupling apparatus (HTCA) ensures sperm head-tail integrity while defective HTCA causes acephalic spermatozoa, rendering males infertile. Here, we show that CENTLEIN is indispensable for HTCA integrity and function, and that inactivation of CENTLEIN in mice leads to sperm decapitation and male sterility. We demonstrate that CENTLEIN directly interacts with both SUN5 and PMFBP1, two proteins localized in the HTCA and related with acephalic spermatozoa syndrome. We find that the absence of Centlein sets SUN5 and PMFBP1 apart, the former close to the sperm head and the latter in the decapitated tail. We show that lack of Sun5 results in CENTLEIN and PMFBP1 left in the decapitated tail, while disruption of Pmfbp1 results in SUN5 and CENTLEIN left on the detached sperm head. These results demonstrate that CENTLEIN cooperating with SUN5 and PMFBP1 participates in the HTCA assembly and integration of sperm head to the tail, indicating that impairments of CENTLEIN might be associated with acephalic spermatozoa syndrome in humans.
Collapse
Affiliation(s)
- Ying Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Chao Liu
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, P.R. China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, P.R. China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Liansheng Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wei Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, P.R. China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, P.R. China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China.
| | - Li Yuan
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
7
|
Liu G, Xing X, Zhang H, Zhu W, Lin G, Lu G, Li W. Patients with acephalic spermatozoa syndrome linked to novel TSGA10/PMFBP1 variants have favorable pregnancy outcomes from intracytoplasmic sperm injection. Clin Genet 2021; 100:334-339. [PMID: 34089195 DOI: 10.1111/cge.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022]
Abstract
Acephalic spermatozoa syndrome is a rare form of teratozoospermia characterized by headless spermatozoa. Previous studies have found that variants in SUN5, PMFBP1, TSGA10, BRDT, and SPATC1L are associated with this phenotype. Many researchers have suggested that variants in TSGA10 without a proximal centriole might influence early embryonic development. This retrospective cohort study included 12 infertile men with severe acephalic spermatozoa in China. We identified six heterozygous variants and four homozygous variants in TSGA10/PMFBP1 in seven patients by whole-exome sequencing (WES). Acephalic spermatozoa defects due to different genetic variations may affect only spermatozoa morphology but do not reduce the chances of fertilization, affect embryo quality at early stages or impair intracytoplasmic sperm injection (ICSI) outcomes. Patients with TSGA10/PMFBP1 variations were all expected to have good prognoses with ICSI.
Collapse
Affiliation(s)
- Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xiaowei Xing
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huan Zhang
- Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Wenbing Zhu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Ge Lin
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China.,Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Guangxiu Lu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China.,Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.,Scientific Research Department, Hunan Guangxiu Hi-tech Life Technology Co., Ltd, Changsha, China
| | - Weina Li
- Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.,Scientific Research Department, Hunan Guangxiu Hi-tech Life Technology Co., Ltd, Changsha, China
| |
Collapse
|
8
|
Cazin C, Boumerdassi Y, Martinez G, Fourati Ben Mustapha S, Whitfield M, Coutton C, Thierry-Mieg N, Di Pizio P, Rives N, Arnoult C, Touré A, Ray PF, Zouari R, Sifer C, Kherraf ZE. Identification and Characterization of the Most Common Genetic Variant Responsible for Acephalic Spermatozoa Syndrome in Men Originating from North Africa. Int J Mol Sci 2021; 22:ijms22042187. [PMID: 33671757 PMCID: PMC7927044 DOI: 10.3390/ijms22042187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/29/2022] Open
Abstract
Acephalic spermatozoa syndrome (ASS) is a rare but extremely severe type of teratozoospermia, defined by the presence of a majority of headless flagella and a minority of tail-less sperm heads in the ejaculate. Like the other severe monomorphic teratozoospermias, ASS has a strong genetic basis and is most often caused by bi-allelic variants in SUN5 (Sad1 and UNC84 domain-containing 5). Using whole exome sequencing (WES), we investigated a cohort of nine infertile subjects displaying ASS. These subjects were recruited in three centers located in France and Tunisia, but all originated from North Africa. Sperm from subjects carrying candidate genetic variants were subjected to immunofluorescence analysis and transmission electron microscopy. Moreover, fluorescent in situ hybridization (FISH) was performed on sperm nuclei to assess their chromosomal content. Variant filtering permitted us to identify the same SUN5 homozygous frameshift variant (c.211+1_211+2dup) in 7/9 individuals (78%). SUN5 encodes a protein localized on the posterior part of the nuclear envelope that is necessary for the attachment of the tail to the sperm head. Immunofluorescence assays performed on sperm cells from three mutated subjects revealed a total absence of SUN5, thus demonstrating the deleterious impact of the identified variant on protein expression. Transmission electron microscopy showed a conserved flagellar structure and a slightly decondensed chromatin. FISH did not highlight a higher rate of chromosome aneuploidy in spermatozoa from SUN5 patients compared to controls, indicating that intra-cytoplasmic sperm injection (ICSI) can be proposed for patients carrying the c.211+1_211+2dup variant. These results suggest that the identified SUN5 variant is the main cause of ASS in the North African population. Consequently, a simple and inexpensive genotyping of the 211+1_211+2dup variant could be beneficial for affected men of North African origin before resorting to more exhaustive genetic analyses.
Collapse
Affiliation(s)
- Caroline Cazin
- Institute for Advanced Biosciences, INSERM, CNRS, Université Grenoble Alpes, F-38000 Grenoble, France; (C.C.); (G.M.); (M.W.); (C.C.); (C.A.); (A.T.); (P.F.R.)
- UM GI-DPI, CHU Grenoble Alpes, F-38000 Grenoble, France
| | - Yasmine Boumerdassi
- Department of Reproductive Biology, Hôpital Jean Verdier, Assistance Publique, Hôpitaux de Paris, F-75004 Paris, France; (Y.B.); (C.S.)
| | - Guillaume Martinez
- Institute for Advanced Biosciences, INSERM, CNRS, Université Grenoble Alpes, F-38000 Grenoble, France; (C.C.); (G.M.); (M.W.); (C.C.); (C.A.); (A.T.); (P.F.R.)
- UM de Génétique Chromosomique, CHU Grenoble Alpes, F-38000 Grenoble, France
| | - Selima Fourati Ben Mustapha
- Centre d’Aide Médicale à la Procréation, Polyclinique les Jasmin, Centre Urbain Nord, Tunis 1003, Tunisia; (S.F.B.M.); (R.Z.)
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM, CNRS, Université Grenoble Alpes, F-38000 Grenoble, France; (C.C.); (G.M.); (M.W.); (C.C.); (C.A.); (A.T.); (P.F.R.)
| | - Charles Coutton
- Institute for Advanced Biosciences, INSERM, CNRS, Université Grenoble Alpes, F-38000 Grenoble, France; (C.C.); (G.M.); (M.W.); (C.C.); (C.A.); (A.T.); (P.F.R.)
- Department of Reproductive Biology, Hôpital Jean Verdier, Assistance Publique, Hôpitaux de Paris, F-75004 Paris, France; (Y.B.); (C.S.)
| | | | - Pierre Di Pizio
- EA 4308 ‘Gametogenesis and Gamete Quality, Normandie University, UNIROUEN, F-76000 Rouen, France; (P.D.P.); (N.R.)
- Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen Normandy University Hospital, F-76000 Rouen, France
| | - Nathalie Rives
- EA 4308 ‘Gametogenesis and Gamete Quality, Normandie University, UNIROUEN, F-76000 Rouen, France; (P.D.P.); (N.R.)
- Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen Normandy University Hospital, F-76000 Rouen, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences, INSERM, CNRS, Université Grenoble Alpes, F-38000 Grenoble, France; (C.C.); (G.M.); (M.W.); (C.C.); (C.A.); (A.T.); (P.F.R.)
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM, CNRS, Université Grenoble Alpes, F-38000 Grenoble, France; (C.C.); (G.M.); (M.W.); (C.C.); (C.A.); (A.T.); (P.F.R.)
| | - Pierre F. Ray
- Institute for Advanced Biosciences, INSERM, CNRS, Université Grenoble Alpes, F-38000 Grenoble, France; (C.C.); (G.M.); (M.W.); (C.C.); (C.A.); (A.T.); (P.F.R.)
- UM GI-DPI, CHU Grenoble Alpes, F-38000 Grenoble, France
| | - Raoudha Zouari
- Centre d’Aide Médicale à la Procréation, Polyclinique les Jasmin, Centre Urbain Nord, Tunis 1003, Tunisia; (S.F.B.M.); (R.Z.)
| | - Christophe Sifer
- Department of Reproductive Biology, Hôpital Jean Verdier, Assistance Publique, Hôpitaux de Paris, F-75004 Paris, France; (Y.B.); (C.S.)
| | - Zine-Eddine Kherraf
- Institute for Advanced Biosciences, INSERM, CNRS, Université Grenoble Alpes, F-38000 Grenoble, France; (C.C.); (G.M.); (M.W.); (C.C.); (C.A.); (A.T.); (P.F.R.)
- UM GI-DPI, CHU Grenoble Alpes, F-38000 Grenoble, France
- Correspondence:
| |
Collapse
|
9
|
Pandruvada S, Royfman R, Shah TA, Sindhwani P, Dupree JM, Schon S, Avidor-Reiss T. Lack of trusted diagnostic tools for undetermined male infertility. J Assist Reprod Genet 2021; 38:265-276. [PMID: 33389378 PMCID: PMC7884538 DOI: 10.1007/s10815-020-02037-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
Semen analysis is the cornerstone of evaluating male infertility, but it is imperfect and insufficient to diagnose male infertility. As a result, about 20% of infertile males have undetermined infertility, a term encompassing male infertility with an unknown underlying cause. Undetermined male infertility includes two categories: (i) idiopathic male infertility-infertile males with abnormal semen analyses with an unknown cause for that abnormality and (ii) unexplained male infertility-males with "normal" semen analyses who are unable to impregnate due to unknown causes. The treatment of males with undetermined infertility is limited due to a lack of understanding the frequency of general sperm defects (e.g., number, motility, shape, viability). Furthermore, there is a lack of trusted, quantitative, and predictive diagnostic tests that look inside the sperm to quantify defects such as DNA damage, RNA abnormalities, centriole dysfunction, or reactive oxygen species to discover the underlying cause. To better treat undetermined male infertility, further research is needed on the frequency of sperm defects and reliable diagnostic tools that assess intracellular sperm components must be developed. The purpose of this review is to uniquely create a paradigm of thought regarding categories of male infertility based on intracellular and extracellular features of semen and sperm, explore the prevalence of the various categories of male factor infertility, call attention to the lack of standardization and universal application of advanced sperm testing techniques beyond semen analysis, and clarify the limitations of standard semen analysis. We also call attention to the variability in definitions and consider the benefits towards undetermined male infertility if these gaps in research are filled.
Collapse
Affiliation(s)
- Swati Pandruvada
- Department of Biological Sciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - Rachel Royfman
- Department of Biological Sciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - Tariq A. Shah
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - Puneet Sindhwani
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - James M. Dupree
- Department of Urology and Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48019 USA
| | - Samantha Schon
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| |
Collapse
|
10
|
Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol 2020; 518:110987. [PMID: 32810575 PMCID: PMC7606549 DOI: 10.1016/j.mce.2020.110987] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are eukaryotic subcellular structures that produce and regulate massive cytoskeleton superstructures. They form centrosomes and cilia, regulate new centriole formation, anchor cilia to the cell, and regulate cilia function. These basic centriolar functions are executed in sperm cells during their amplification from spermatogonial stem cells during their differentiation to spermatozoa, and finally, after fertilization, when the sperm fuses with the egg. However, sperm centrioles exhibit many unique characteristics not commonly observed in other cell types, including structural remodeling, centriole-flagellum transition zone migration, and cell membrane association during meiosis. Here, we discuss five roles of sperm centrioles: orchestrating early spermatogenic cell divisions, forming the spermatozoon flagella, linking the spermatozoon head and tail, controlling sperm tail beating, and organizing the cytoskeleton of the zygote post-fertilization. We present the historic discovery of the centriole as a sperm factor that initiates embryogenesis, and recent genetic studies in humans and other mammals evaluating the current evidence for the five functions of sperm centrioles. We also examine information connecting the various sperm centriole functions to distinct clinical phenotypes. The emerging picture is that centrioles are essential sperm components with remarkable functional diversity and specialization that will require extensive and in-depth future studies.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA; Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - Alexa Carr
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
11
|
Beurois J, Cazin C, Kherraf ZE, Martinez G, Celse T, Touré A, Arnoult C, Ray PF, Coutton C. Genetics of teratozoospermia: Back to the head. Best Pract Res Clin Endocrinol Metab 2020; 34:101473. [PMID: 33183966 DOI: 10.1016/j.beem.2020.101473] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spermatozoa are polarized cells with a head and a flagellum joined by the connecting piece. Head integrity is critical for normal sperm function, and head defects consistently lead to male infertility. Abnormalities of the sperm head are among the most severe and characteristic sperm defects. Patients presenting with a monomorphic head sperm defects such as globozoospermia or marcrozoospermia were analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm head defects such as acephalic spermatozoa have also enabled the identification of new infertility genes such as SUN5. Here, we review the genetic causes leading to morphological defects of sperm head. Advances in the genetics of male infertility are necessary to improve the management of infertility and will pave the road towards future strategies of treatments, especially for patients with the most severe phenotype as sperm head defects.
Collapse
Affiliation(s)
- Julie Beurois
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Caroline Cazin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Guillaume Martinez
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Tristan Celse
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Aminata Touré
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Charles Coutton
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.
| |
Collapse
|
12
|
Aitken RJ, Baker MA. The Role of Genetics and Oxidative Stress in the Etiology of Male Infertility-A Unifying Hypothesis? Front Endocrinol (Lausanne) 2020; 11:581838. [PMID: 33101214 PMCID: PMC7554587 DOI: 10.3389/fendo.2020.581838] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the high prevalence of male infertility, very little is known about its etiology. In recent years however, advances in gene sequencing technology have enabled us to identify a large number of rare single point mutations responsible for impeding all aspects of male reproduction from its embryonic origins, through the endocrine regulation of spermatogenesis to germ cell differentiation and sperm function. Such monogenic mutations aside, the most common genetic causes of male infertility are aneuploidies such as Klinefelter syndrome and Y-chromosome mutations which together account for around 20-25% of all cases of non-obstructive azoospermia. Oxidative stress has also emerged as a major cause of male fertility with at least 40% of patients exhibiting some evidence of redox attack, resulting in high levels of lipid peroxidation and oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine (8OHdG). The latter is highly mutagenic and may contribute to de novo mutations in our species, 75% of which are known to occur in the male germ line. An examination of 8OHdG lesions in the human sperm genome has revealed ~9,000 genomic regions vulnerable to oxidative attack in spermatozoa. While these oxidized bases are generally spread widely across the genome, a particular region on chromosome 15 appears to be a hot spot for oxidative attack. This locus maps to a genetic location which has linkages to male infertility, cancer, imprinting disorders and a variety of behavioral conditions (autism, bipolar disease, spontaneous schizophrenia) which have been linked to the age of the father at the moment of conception. We present a hypothesis whereby a number of environmental, lifestyle and clinical factors conspire to induce oxidative DNA damage in the male germ line which then triggers the formation de novo mutations which can have a major impact on the health of the offspring including their subsequent fertility.
Collapse
Affiliation(s)
- Robert John Aitken
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Robert John Aitken
| | - Mark A. Baker
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|