1
|
Bay S, Digwal CS, Rodilla Martín AM, Sharma S, Stanisavljevic A, Rodina A, Attaran A, Roychowdhury T, Parikh K, Toth E, Panchal P, Rosiek E, Pasala C, Arancio O, Fraser PE, Alldred MJ, Prado MAM, Ginsberg SD, Chiosis G. Synthesis and Characterization of Click Chemical Probes for Single-Cell Resolution Detection of Epichaperomes in Neurodegenerative Disorders. Biomedicines 2024; 12:1252. [PMID: 38927459 PMCID: PMC11201208 DOI: 10.3390/biomedicines12061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control. Through comprehensive in vitro assays and cell-based investigations, we establish the specificity of the PU-TCO probe for epichaperomes. Furthermore, we demonstrate the efficacy of PU-TCO in detecting epichaperomes in brain tissue with a cellular resolution, underscoring its potential as a valuable tool for dissecting single-cell responses in neurodegenerative diseases. This clickable probe is therefore poised to address a critical need in the field, offering unprecedented precision and versatility in studying epichaperomes and opening avenues for novel insights into their role in disease pathology.
Collapse
Affiliation(s)
- Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anoosha Attaran
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kamya Parikh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eugene Toth
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Rosiek
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marco A M Prado
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Liu XY, Wang K, Deng XH, Wei YH, Guo R, Liu SF, Zhu YF, Zhong JJ, Zheng JY, Wang MD, Ye QH, He JQ, Guo KH, Zhu JR, Huang SQ, Chen ZX, Lv CS, Wen L. Amelioration of olfactory dysfunction in a mouse model of Parkinson's disease via enhancing GABAergic signaling. Cell Biosci 2023; 13:101. [PMID: 37270503 DOI: 10.1186/s13578-023-01049-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/06/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Olfactory dysfunction is among the earliest non-motor symptoms of Parkinson's disease (PD). As the foremost pathological hallmark, α-synuclein initiates the pathology in the olfactory pathway at the early stage of PD, particularly in the olfactory epithelium (OE) and olfactory bulb (OB). However, the local neural microcircuit mechanisms underlying olfactory dysfunction between OE and OB in early PD remain unknown. RESULTS We observed that odor detection and discrimination were impaired in 6-month-old SNCA-A53T mice, while their motor ability remained unaffected. It was confirmed that α-synuclein increased and accumulated in OB but not in OE. Notably, the hyperactivity of mitral/tufted cells and the excitation/inhibition imbalance in OB were found in 6-month-old SNCA-A53T mice, which was attributed to the impaired GABAergic transmission and aberrant expression of GABA transporter 1 and vesicular GABA transporter in OB. We further showed that tiagabine, a potent and selective GABA reuptake inhibitor, could reverse the impaired olfactory function and GABAergic signaling in OB of SNCA-A53T mice. CONCLUSIONS Taken together, our findings demonstrate potential synaptic mechanisms of local neural microcircuit underlying olfactory dysfunction at the early stage of PD. These results highlight the critical role of aberrant GABAergic signaling of OB in early diagnosis and provide a potential therapeutic strategy for early-stage PD.
Collapse
Affiliation(s)
- Xing-Yang Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Ke Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Xian-Hua Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Yi-Hua Wei
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Rui Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Sui-Feng Liu
- Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China
| | - Yi-Fan Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jia-Jun Zhong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jing-Yuan Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Meng-Dan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Qiu-Hong Ye
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jian-Quan He
- Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China
| | - Kai-Hang Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jun-Rong Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Shu-Qiong Huang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Ze-Xu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Chong-Shan Lv
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Lei Wen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China.
| |
Collapse
|