1
|
Akyildiz K, Yilmaz A, Avci U, Toraman MN, Yazici ZA. White Tea Consumption Alleviates Anthropometric and Metabolic Parameters in Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1568. [PMID: 39459354 PMCID: PMC11509830 DOI: 10.3390/medicina60101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Obesity and related disorders are an increasing global health problem. Achieving and maintaining long-term weight loss through lifestyle changes and/or pharmacological interventions have not met expectations. Dietary supplements and alternative treatments have also shown limited effectiveness in this regard. The consumption of green tea in general has been shown to benefit obese patients, with effects attributed to caffeine, catechins, polyphenols and other components. However, the potential of white tea to prevent and treat the negative effects of obesity has not been addressed so far. In this study, the effect of white tea (WT) consumption in obese individuals was anthropometrically and biochemically investigated. Materials and Methods: Based on anthropometric and biochemical assessments, the patients were assigned to the control, orlistat, metformin and WT groups. Patients were given a diet and exercise program and one of either orlistat, metformin or WT for 12 weeks. At the end of the 12th week, the anthropometric and biochemical measurements were reassessed. Results: Body weight, waist circumference and BMI parameters decreased significantly in all groups. TNF-α, IL-6, IL-1β and MMP-9 levels decreased significantly in the WT group. In addition, contrary to a significant elevation in HDL-C, the serum cholesterol, LDL-C and TG levels decreased significantly. Furthermore, leptin, ghrelin and asprosin levels decreased significantly. Serum glucose levels decreased significantly in all groups except for the control. In the WT group, while there was a significant decrease in the levels of serum PL MDA and 8-OHdG, the opposite was true for GSH. Conclusions: The oral consumption of WT, its availability and its potency in obesity treatment and prevention pave the way for further delineation of the mechanisms of actions of its bioactive compounds at the cellular and endocrinological levels.
Collapse
Affiliation(s)
- Kerimali Akyildiz
- Department of Medical Services and Techniques, School of Vocational Healh Care Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Adnan Yilmaz
- Department of Biochemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Ugur Avci
- Department of Endocrinology and Metabolism, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Merve Nur Toraman
- Department of Nutrition and Diet, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Zihni Acar Yazici
- Department of Microbiology, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| |
Collapse
|
2
|
Chuaijit S, Punsawad C, Winoto V, Plaingam W, Kongkaew I, Phetcharat A, Ichikawa T, Kubo M, Kawakami F, Tedasen A, Chatatikun M. Leaf extract of Garcinia atroviridis promotes anti-heat stress and antioxidant effects in Caenorhabditis elegans. Front Pharmacol 2024; 15:1331627. [PMID: 38515852 PMCID: PMC10955098 DOI: 10.3389/fphar.2024.1331627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Garcinia atroviridis has been used for traditional medicines, healthy foods and tea. The chemical compositions and biological activities of fruit, stem bark and root have been widely studied. However, the phytochemical components and the biological activities in Garcinia atroviridis leaves (GAL) are limited. This research aims to study the phytochemical components and the stress resistance effects of GAL in Caenorhabditis elegans (C. elegans). Methods: To investigate the chemical components and antioxidant activities of GAL extract, the ethanol extract was characterized by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF MS) analysis and C. elegans was used to evaluate the effects of GAL extracts on longevity and stress resistance. Results and discussion: The results revealed that the ethanol extract of GAL possesses free radical scavenging activities. Furthermore, GAL extract increased the lifespan of C. elegans by 6.02%, 15.26%, and 12.75% at concentrations of 25, 50, and 100 μg/mL, respectively. GAL extract exhibited improved stress resistance under conditions of heat and hydrogen peroxide-induced stress. The survival rates of GAL extract-treated worms were significantly higher than those of untreated worms, and GAL extract reduced reactive oxygen species (ROS) accumulation. Additionally, GAL extract treatment upregulated the expression of stress resistance-associated genes, including gst-4, sod-3, skn-1, and hsp16.2. GAL extract supplementation alleviated stress and enhanced longevity by inducing stress-related genes in C. elegans. The observed effects of GAL extracts may be attributed to the stimulation of oxidant enzymes mediated through DAF-16/FOXO and SKN-1/NRF2, as well as the enhancement of thermal defense in C. elegans. Collectively, this study provides the first evidence of the antioxidant activities of GAL and elucidates the underlying mechanisms of stress resistance.
Collapse
Affiliation(s)
- Sirithip Chuaijit
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Veronica Winoto
- Department of Chemical Engineering, Thammasat School of Engineering, Thammasat University Rangsit Campus, Rangsit, Pathum Thani, Thailand
| | - Waluga Plaingam
- College of Oriental Medicine, Rangsit University, Rangsit, Pathum Thani, Thailand
| | - Itti Kongkaew
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Atidtaya Phetcharat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato, Sagamihara, Japan
| | - Makoto Kubo
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato, Sagamihara, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato, Sagamihara, Japan
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Moragot Chatatikun
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
3
|
Chatatikun M, Tedasen A, Pattaranggoon NC, Palachum W, Chuaijit S, Mudpan A, Pruksaphanrat S, Sohbenalee S, Yamasaki K, Klangbud WK. Antioxidant activity, anti-tyrosinase activity, molecular docking studies, and molecular dynamic simulation of active compounds found in nipa palm vinegar. PeerJ 2023; 11:e16494. [PMID: 38025738 PMCID: PMC10680452 DOI: 10.7717/peerj.16494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tyrosinase is a key enzyme in melanogenesis and its inhibitors have become increasingly because of their potential activity as hypopigmenting agents which have less side effects. Nipa palm vinegar is an aqueous product that is normally used as a food supplement. The aim of this study was to study the determination of antioxidant activity and tyrosinase inhibitory activities of aqueous extract of original nipa palm vinegar (AE O-NPV), nipa palm vinegar powder (NPV-P) and aqueous extract of nipa palm vinegar powder (AE NPV-P) were examined. Nipa palm vinegars were evaluated the phenolic and flavonoid content, and the active compounds which were submitted to molecular docking and molecular dynamic simulation, chemoinformatics, rule of five, skin absorption and toxicity. The highest phenolic and flavonoid contents in the AE O-NPV were 2.36 ± 0.23 mg gallic acid equivalents/g extract and 5.11 ± 0.59 mg quercetin equivalents/g, and the highest ABTS radical cation scavenging activity was also found. The AE O-NPV, NPV-P and AE NPV-P showed anti-mushroom tyrosinase activity. The HPLC analysis showed that there were vanillic acid and three flavonoids (catechin, rutin and quercetin). The molecular docking study revealed that the binding of the vanillic acid and three flavonoids occurred in the active site residues (histidine and other amino acids). Moreover, the number of hydrogen bond acceptors/donors, solubility, polar surface area and bioavailability score of the vanillic acid and three flavonoids were acceptable compared to Lipinski's Rule of Five. The molecular dynamic simulation showed that vanillic acid interacts with HIS284 through π-π stacking hydrophobic interactions and forms a metal-acceptor interaction with the copper molecule at the tyrosinase active site. All compounds revealed good skin permeability and nontoxicity. Nipa palm vinegar could be a promising source of a new ingredient for tyrosinase inhibition for cosmetics or pharmaceutical products.
Collapse
Affiliation(s)
- Moragot Chatatikun
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research of Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center of Innovation and Health Products, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Nawanwat Chainuwong Pattaranggoon
- Program in Bioinformatics and Computational Biology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Medical Technology, Rangsit University, Muang Pathumthani, Pathumthani, Thailand
| | - Wilawan Palachum
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research of Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sirithip Chuaijit
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Amron Mudpan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Supawita Pruksaphanrat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sasirat Sohbenalee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Kenshi Yamasaki
- Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiyada Kwanhian Klangbud
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research of Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
4
|
Palachum W, Klangbud WK, Chisti Y. Novel nutritionally-enriched gummy jelly infused with nipa palm vinegar powder and nipa palm syrup as functional food ingredients. Heliyon 2023; 9:e21873. [PMID: 38027860 PMCID: PMC10663921 DOI: 10.1016/j.heliyon.2023.e21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this research was to develop a nutritionally-enriched gummy jelly product incorporating nipa palm vinegar powder (NPVp; a nutrients-rich vinegar) and nipa palm syrup (NPS), a nutrients-rich sweetener with a low glycemic index. A gummy jelly product was developed based on sensory acceptance tests. The water activity and the moisture content of the final product were within the acceptable range for preservation under ambient conditions. The final product had a total phenolic content of 861 μg gallic acid equivalent (GAE) per g and an antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition) of 72.7 %. The final product had the following nutritional attributes (per 100 g dry mass): 319.7 kcal of energy, 8.8 g protein, 0.2 g fats, 70.6 g carbohydrates, 59.9 g total sugars, 0.7 g of total dietary fibers, 34.6 mg calcium, 0.3 mg iron, 168.0 mg sodium, and 774.7 mg vitamin C. The in vitro glycemic index of the product was 27.4. Based on their nutrients-content, NPVp and NPS were suitable for use in other functional food products.
Collapse
Affiliation(s)
- Wilawan Palachum
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Wiyada Kwanhian Klangbud
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Yusuf Chisti
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Abeysekera WKSM, Jayathilaka SI, Abeysekera WPKM, Senevirathne IGNH, Jayanath NY, Premakumara GAS, Wijewardana DCMSI. In vitro determination of anti-lipidemic, anti-inflammatory, and anti-oxidant properties and proximate composition of range of millet types and sorghum varieties in Sri Lanka. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.884436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methanolic extracts of whole grains of five millet types and two sorghum varieties were evaluated for anti-lipidemic, anti-inflammatory, and a range of anti-oxidant properties in vitro (n = 3 each). Furthermore, proximate composition (n = 3 each) was also studied. Results showed significant differences (P < 0.05) among the selected samples for studied parameters. Pancreatic lipase and cholesterol esterase inhibitory activities of selected samples (2 mg/ml) ranged from 21.16 ± 1.58 to 66.65 ± 3.30 and 17.43 ± 0.60 to 52.09 ± 1.61%, respectively. Nitric oxide inhibitory activity of selected samples (2 mg/ml) ranged from −1.17 ± 0.32 to 13.56 ± 0.93%. Total polyphenolic content (TPC), total flavonoid content (TFC), and total proanthocyanidin content (TPAC) were in the range of 0.19 ± 0.01–12.50 ± 0.87 mg gallic acid equivalents/g, 0.05 ± 0.00–1.57 ± 0.01 mg quercetin equivalents/g, and 0.35 ± 0.01–12.87 ± 0.25 mg cyaniding equivalents/g of samples, respectively. Ferric reducing anti-oxidant power, oxygen radical absorbance capacity, ferrous ion chelating activity, and ABTS and DPPH anti-oxidant properties ranged from 0.15 ± 0.00 to 4.56 ± 0.03 mg of Trolox equivalents (TEs)/g, 0.19 ± 0.01 to 8.50 ± 0.72 mg of TEs/g, 0.13 ± 0.00 to 0.79 ± 0.03 mg EDTA equivalents/g, 0.22 ± 0.00 to 25.57 ± 0.35 mg of TEs/g, and 0.07 ± 0.00 to 22.97 ± 0.83 mg of TEs/g of samples, respectively. Among the studied samples, pigmented sweet sorghum exhibited the highest activities for all the tested parameters. The observed activities were moderate compared to the reference standards used. The highest values for proximate composition parameters tested varied with the different samples studied. In conclusion, the consumption of especially pigmented millet and sorghum in Sri Lanka may play an important role in the prevention and management of oxidative stress–associated chronic diseases. This is the first study to report pancreatic lipase and cholesterol esterase inhibitory activities of any millet types and sorghum varieties in Sri Lanka and the first report of cholesterol esterase inhibitory activity of millet and sorghum the world over.
Collapse
|
6
|
Spray-Dried Nipa Palm Vinegar Powder: Production and Evaluation of Physicochemical, Nutritional, Sensory, and Storage Aspects. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nipa palm vinegar (NPV) is a naturally fermented vinegar derived from the nipa palm (Nypa fruticans Wurmb) sap. This work optimized production of spray-dried nipa palm vinegar powder. The influence of the various drier air inlet temperatures (150, 170, and 190 °C) and maltodextrin DE10 carrier concentrations (15 and 20% w/v) in the feed, on the characteristics of the product powder was investigated. Nipa palm vinegar powder (NPVp) was evaluated in terms of the following responses: physicochemical and nutritional properties, sensory acceptability, and storage stability. All processing variables affected the responses. Based on product desirability as the optimization criterion, spray-drying with a hot air inlet temperature of 170 °C with a 15% w/v maltodextrin DE10 in the feed was optimal. The nutritional characteristics of the product made under the above identified optimal conditions were (per 100 g dry product): a calorific value of 366.2 kcal; 1.3 g protein; 88.1 g carbohydrate; 0.96 g fat; 883.9 mg potassium; 12.7 mg vitamin C; and 105 mg gallic acid equivalent (GAE) phenolics content. The product, vacuum-packed and heat-sealed in aluminum laminated polyethylene bags, could be stored at 25 °C for at least 180 days without noticeable loss in quality.
Collapse
|
7
|
In Vitro Antilipidic and Antithrombotic Activities of Plectranthus glandulosus (Lamiaceae) Leaves Extracts and Fractions. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4145659. [PMID: 35178447 PMCID: PMC8844437 DOI: 10.1155/2022/4145659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Objective The present study investigated the effect of the leaves extracts and fractions of Plectranthus glandulosus on the inhibition of pancreatic lipase, cholesterol esterase, adipocytes lipid uptake, and antithrombotic activity which may be important in atherosclerosis development. Methods Aqueous, ethanolic, and hydroethanolic extracts of Plactranthus glandulosus were prepared by maceration. The hydroethanolic extract was fractionated into n-hexane, ethylacetate, and n-butanol fractions and their inhibition of pancreatic lipase, cholesterol esterase, adipocytes lipid uptake, and antithrombotic activities measured. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis was carried out to determine phytochemical constituents present in the extracts. Results The standard orlistat exhibited a higher inhibitory activity on pancreatic lipase and cholesterol esterase (16.31 μg/mL and 15.75 μg/mL, respectively) compared to ethyl acetate fraction (IC50, 17.70 μg/mL and IC50, 24.8 μg/mL, respectively). Among crude extract, hydroethanolic extract showed a better inhibition against pancreatic lipase (IC50, 21.06 μg/mL) and cholesterol esterase (IC50, 25.14 μg/mL) though not comparable to the effect of orlistat. The best lipid uptake inhibition was observed in the hydroethanolic extract (IC50, 45.42 μg/mL) followed by the ethyl acetate fraction (IC50, 47.77 μg/mL). A better antithrombolytic activity was exhibited by the ethyl acetate fraction at all concentrations (50-800 μ/mL), while hydroethanolic extract exhibited the best activity among crude extract. However, these were not comparable to the standard aspirin. The LC-HRMS analysis revealed the presence of 7-O-methyl luteolin 5-O-β-D-glucopyranoside, chrysoeriol 5-O-β-D-glucopyranoside, 5,7-dihydroxy-3,2′,4′-trimethoxyflavone, and plectranmicin as major compounds in both hydroethanolic extract and ethyl acetate fraction. Conclusion Thus, our finding supports the traditional use of this plant, which might provide a potential source for future antiatherosclerotic drug discovery.
Collapse
|
8
|
Ousaaid D, Mechchate H, Laaroussi H, Hano C, Bakour M, El Ghouizi A, Conte R, Lyoussi B, El Arabi I. Fruits Vinegar: Quality Characteristics, Phytochemistry, and Functionality. Molecules 2021; 27:molecules27010222. [PMID: 35011451 PMCID: PMC8746612 DOI: 10.3390/molecules27010222] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
The popularity of fruits vinegar (FsV) has been increased recently as a healthy drink wealthy in bioactive compounds that provide several beneficial properties. This review was designed in the frame of valorization of fruits vinegar as a by-product with high value added by providing overall information on its biochemical constituents and beneficial potencies. It contains a cocktail of bioactive ingredients including polyphenolic acids, organic acids, tetramethylperazine, and melanoidins. Acetic acid is the most abundant organic acid and chlorogenic acid is the major phenol in apple vinegar. The administration of fruits vinegar could prevent diabetes, hypercholesterolemia, oxidative stress, cancer, and boost immunity as well as provide a remarkable antioxidant ability. The production techniques influence the quality of vinegar, and consequently, its health benefits.
Collapse
Affiliation(s)
- Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, P.O. Box 1796, Morocco; (D.O.); (H.L.); (M.B.); (A.E.G.); (B.L.); (I.E.A.)
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Correspondence:
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, P.O. Box 1796, Morocco; (D.O.); (H.L.); (M.B.); (A.E.G.); (B.L.); (I.E.A.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, P.O. Box 1796, Morocco; (D.O.); (H.L.); (M.B.); (A.E.G.); (B.L.); (I.E.A.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, P.O. Box 1796, Morocco; (D.O.); (H.L.); (M.B.); (A.E.G.); (B.L.); (I.E.A.)
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, P.O. Box 1796, Morocco; (D.O.); (H.L.); (M.B.); (A.E.G.); (B.L.); (I.E.A.)
| | - Ilham El Arabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, P.O. Box 1796, Morocco; (D.O.); (H.L.); (M.B.); (A.E.G.); (B.L.); (I.E.A.)
| |
Collapse
|
9
|
Senghoi W, Klangbud WK. Antioxidants, inhibits the growth of foodborne pathogens and reduces nitric oxide activity in LPS-stimulated RAW 264.7 cells of nipa palm vinegar. PeerJ 2021; 9:e12151. [PMID: 34616617 PMCID: PMC8450002 DOI: 10.7717/peerj.12151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/21/2021] [Indexed: 11/20/2022] Open
Abstract
Nipa palm vinegar (NPV) made from the sap of nipa palm (Nypa fruticans Wurmb.) has long been used as a local food seasoning and folk medicine. This study compared the bioactive compounds, antioxidant, in vitro anti-inflammatory and antimicrobial activities of three NPVs obtained from different plantations based on varied soil and water salinity levels, including fresh water NPV, brackish water NPV and saline water NPV. The analysis results revealed that total phenolic content of saline water NPV had statistically significantly lower than both fresh water and brackish water NPV (p < 0.0001). Furthermore percentage of acetic acid in brackish water NPV had statistically significantly lower than both fresh water and saline water. NPV (p = 0.002). Nevertheless, total flavonoid and pH, were not significantly different (p = 0.144 and 0.066, respectively). The antioxidant activities using three ABTS, DPPH and FRAP methods displayed similar patterns, in which saline water NPV showed the highest antioxidant activities, followed by brackish water and fresh water NPV, respectively. Antimicrobial activity was examined for seven enteropathogenic bacteria. The tested NPVs were found inhibitive against all test cultures with a minimum inhibitory concentration (MIC) of ≤ 7.8 µL/mL. The cytotoxicity of the NPV obtained from different plantations by MTT assay revealed low cytotoxicity. Anti-inflammatory activity was also carried out through the inhibition of nitric oxide production. The fresh water NPV exhibited the highest anti-inflammatory activity with IC50 17.59 ± 0.17 µL/mL, followed by saline and brackish water NPV with IC50 18.12 ± 0.49 and 28.29 ± 2.64 µL/mL, respectively. The findings indicated that NPV from different soil salinities could potentially be natural functional food and developed to antimicrobial and anti-inflammatory medicinal agents with safety.
Collapse
Affiliation(s)
- Wilaiwan Senghoi
- Center of Excellence Research for Melioidosis, Walailak University, Thasala, Nakhon Si Thammarat, Thailand.,Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Wiyada Kwanhian Klangbud
- Center of Excellence Research for Melioidosis, Walailak University, Thasala, Nakhon Si Thammarat, Thailand.,Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|