1
|
Zhang M, Wu W, Huang C, Cai T, Wang M, Zhao N, Liu S, Yang S. Interaction of Bmal1 and eIF2α/ATF4 pathway was involved in Shuxie compound alleviation of circadian rhythm disturbance-induced hepatic endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116446. [PMID: 37019162 DOI: 10.1016/j.jep.2023.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuxie Compound (SX) combines the composition and efficacy of Suanzaoren decoction and Huanglian Wendan decoction. It can soothe the liver, regulate the qi, nourish the blood and calm the mind. It is used in the clinical treatment of sleep disorder with liver stagnation. Modern studies have proved that circadian rhythm disorder (CRD) can cause sleep deprivation and liver damage, which can be effectively ameliorated by traditional Chinese medicine to soothe the liver stagnation. However, the mechanism of SX is unclear. AIM OF THE STUDY This study was designed to demonstrate the impact of SX on CRD in vivo, and confirm the molecular mechanisms of SX in vitro. MATERIALS AND METHODS The quality of SX and drug-containing serum was controlled by UPLC-Q-TOF/MS, which were used in vivo and in vitro experiments, respectively. In vivo, a light deprivation mouse model was used. In vitro, a stable knockdown Bmal1 cell line was used to explore SX mechanism. RESULTS Low-dose SX (SXL) could restore (1) circadian activity pattern, (2) 24-h basal metabolic pattern, (3) liver injury, and (4) Endoplasmic reticulum (ER) stress in CRD mice. CRD decreased the liver Bmal1 protein at ZT15, which was reversed by SXL treatment. Besides, SXL decreased the mRNA expression of Grp78/ATF4/Chop and the protein expression of ATF4/Chop at ZT11. In vitro experiments, SX reduced the protein expression of thapsigargin (tg)-induced p-eIF2α/ATF4 pathway and increase the viability of AML12 cells by increasing the expression of Bmal1 protein. CONCLUSIONS SXL relieved CRD-induced ER stress and improve cell viability by up-regulating the expression of Bmal1 protein in the liver and then inhibiting the protein expression of p-eIF2α/ATF4.
Collapse
Affiliation(s)
- Mengting Zhang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Wanhong Wu
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Teng Cai
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Mengyuan Wang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Nengjiang Zhao
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Suhuan Liu
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Shuyu Yang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
2
|
Yan Y, Li J, Zhang Y, Wang H, Qin X, Zhai K, Du C. Screening the effective components of Suanzaoren decoction on the treatment of chronic restraint stress induced anxiety-like mice by integrated chinmedomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154853. [PMID: 37156059 DOI: 10.1016/j.phymed.2023.154853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Suanzaoren decoction (SZRD) is a classical traditional Chinese prescription. It is widely used to treat mental disorders, including insomnia, anxiety, and depression, in China and other Asian countries. However, the effective components and mechanisms underlying SZRD remained unclear. PURPOSE We aimed to develop a new strategy to discover the effects and potential mechanisms of SZRD against anxiety and to further reveal the effective components of SZRD in treating anxiety. STUDY DESIGN AND METHODS First, the chronic restraint stress (CRS)-induced mouse model of anxiety was orally administered SZRD, and behavioral indicators and biochemical parameters were applied to assess efficacy. A chinmedomics strategy based on UHPLC-Q-TOF-MS technology and network pharmacology were then used to screen and explore potentially effective components and therapeutic mechanisms. Finally, molecular docking was applied to further confirm the effective components of SZRD, and a multivariate network for anxiolytic effects was constructed. RESULTS SZRD exerted anxiolytic effects by increasing the percentage of entries into open arms and the time spent in open arms; improving hippocampal 5-HT, GABA, and NE levels; and increasing serum corticosterone (CORT) and corticotropin-releasing hormone (CRH) levels caused by CRS challenge. Beside, SZRD exerted a sedative effect by decreasing sleep time and prolonging sleep latency with no muscle relaxation effect in CRS mice. A total of 110 components were identified in SZRD, 20 of which were absorbed in the blood. Twenty-one serum biomarkers involved in arachidonic acid, tryptophan, sphingolipid, and linoleic acid metabolism were identified after SZRD intervention. Finally, a multivariate network including prescription-effective components-targets-pathway of SZRD treating anxiety, including 11 effective components, 4 targets and 2 pathway was constructed. CONCLUSION The current study demonstrated that integrating chinmedomics and network pharmacology was a powerful approach to investigating the effective components and therapeutic mechanisms of SZRD and provided a solid basis for the quality marker (Q-marker) of SZRD.
Collapse
Affiliation(s)
- Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Jiahan Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Yinjie Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Hui Wang
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, Shanxi 030619, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, 49, Bianhe Road, Suzhou, Anhui 234000, China.
| | - Chenhui Du
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, Shanxi 030619, China.
| |
Collapse
|
3
|
Zhang XH, Zhang X, Feng HY, Cao CC, Lv HL, Wang YL, Ren LJ. An investigation on the changes of serum CCK-8, substance P, and 5-HT in patients with post-stroke insomnia. Technol Health Care 2023; 31:2355-2361. [PMID: 37483040 DOI: 10.3233/thc-230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND At present, the pathogenesis of post-stroke insomnia (PSI) is still inconclusive. OBJECTIVE To explore the changes and significance of serum cholecystokinin-8 (CCK-8), substance P (SP), and 5-hydroxytryptamine (5-HT) in patients with PSI. METHODS Ninety-one patients with stroke were selected as the research subjects, and according to the score of the Athens Insomnia Scale (AIS), they were divided into the insomnia group and the non-insomnia group. The serum levels of CCK-8, SP, and 5-HT in the two groups were compared to explore their relationships with PSI. RESULTS Among the 91 patients, 56 were in the insomnia group and 35 were in the non-insomnia group, and the incidence of insomnia was 61.5%. There was no significant difference in the serum levels of CCK-8, SP, and 5-HT between the two groups (P= 0.696, 0.980, and 0.809, respectively). One-way analysis of variance showed that there was no significant correlation between the serum levels of CCK-8, SP, 5-HT, and the AIS score (P= 0.7393, 0.9581, and 0.5952, respectively). CONCLUSION The incidence of PSI was relatively high, but it could not be proved that CCK-8, SP, and 5-HT were involved in the pathogenesis of PSI. There might exist other neurotransmitters involved in the pathophysiological process of PSI, which should be further explored.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, Guangdong, China
| | - Xin Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, Guangdong, China
| | - Hong-Ye Feng
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Chang-Chun Cao
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, Guangdong, China
| | - Hui-Lan Lv
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, Guangdong, China
| | - Yu-Long Wang
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Li-Jie Ren
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Biomedical Analytics of Four Chinese Medicinals in Treatment of Insomnia Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9414262. [PMID: 35769674 PMCID: PMC9236802 DOI: 10.1155/2022/9414262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Aim. Our aim is to recommend the appropriate Chinese medicinals in clinical treatment of insomnia, which are suānzăorén (Semen Ziziphi Spinosae), chuānxiōng (Rhizoma Chuanxiong), fúlíng (Poria), and báisháo (Radix Paeoniae Alba). Method. Based on network pharmacology, the active molecules and mechanism of these four Chinese medicinals treating insomnia were sought and analyzed. The components of the four Chinese medicinals with potential activity were collected and screened. Moreover, the recollected human disease-related targets were correlated through Cytoscape 3.8.2, and the network diagram of drug component disease targets was drawn. Based on the human protein-protein interaction database, the above network diagram was imported to establish the protein-protein interaction (PPI) and composite target pathway (C-T-P) networks. After selecting important information, the pathway analysis was carried out to show the biological process, core target, and core pathway of insomnia treatment. Result. In this study, 44 active components and 81 drug-disease common targets were obtained; 307 key targets were found in the PPI network; a core cluster composed of 14 nodes and 50 functional associations was found. Conclusion. In summary, the four Chinese medicinals’ effective components and main mechanism of in the treatment of insomnia may be related to their participation in the regulation of endocrine. Compared with the existing network pharmacological analysis results of SuānZăoRénTāng (Sour Jujube Decoction), which is commonly used in insomnia, they have similar effects on the immune system and HPA axis, while the focus of the four Chinese medicinals is mainly on endocrine regulation, and SuānZăoRénTāng (Sour Jujube Decoction) is mainly on anti-inflammatory effect.
Collapse
|
5
|
Dong YJ, Jiang NH, Zhan LH, Teng X, Fang X, Lin MQ, Xie ZY, Luo R, Li LZ, Li B, Zhang BB, Lv GY, Chen SH. Soporific effect of modified Suanzaoren Decoction on mice models of insomnia by regulating Orexin-A and HPA axis homeostasis. Biomed Pharmacother 2021; 143:112141. [PMID: 34509822 DOI: 10.1016/j.biopha.2021.112141] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
AIM Modified Suanzaoren Decoction (MSZRD) is obtained by improving Suanzaoren Decoction (SZRT), a traditional Chinese herbal prescription that has been used to treat insomnia for more than thousands of years. Our previous study showed that MSZRD can improve the gastrointestinal discomfort related insomnia by regulating Orexin-A. This study is the first study to evaluate the effects and possible mechanisms of MSZRD in mice with insomnia caused by p-chlorophenylalanine (PCPA) combined with multifactor random stimulation. METHODS After 14 days of multifactor stimulation to ICR mice, a PCPA suspension (30 mg/mL) was injected intraperitoneally for two consecutive days to establish an insomnia model. Three different doses of MSZRD (3.6, 7.2, and 14.4 g/kg/day) were given to ICR mice for 24 days. The food intake and back temperature were measured, and behavioral tests and pentobarbital sodium-induced sleep tests were conducted. The levels of Orexin-A, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and adrenocortical hormones (CORT) in the serum and 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in hypothalamus were measured using enzyme-linked immunosorbent assay (ELISA) kits. The levels of γ-aminobutyric acid (GABA) and glutamic acid (Glu) were measured by high-performance liquid chromatography (HPLC). The expression of 5HT1A receptor (5-HTRIA) and orexin receptor 2 antibody (OX2R) was measured by Western blot (WB) and immunohistochemical staining (ICH). Hematoxylin and eosin (H&E) staining and Nissl staining were used to assess the histological changes in hypothalamus tissue. RESULTS Of note, MSZRD can shorten the sleep latency of insomnia mice (P < 0.05, 0.01), prolonged the sleep duration of mice (P < 0.05, 0.01), and improve the circadian rhythm disorder relative to placebo-treated animals. Furthermore, MSZRD effectively increased the content of 5-HT and 5-HTR1A protein in the hypothalamus of insomnia mice (P < 0.05, 0.01), while downregulated the content of DA and NE (P < 0.05, 0.01). Importantly, serum GABA concentration was increased by treatment with MSZRD (P < 0.05), as reflected by a decreased Glu/GABA ratio (P < 0.05). Moreover, MSZRD decreased the levels of CORT, ACTH, and CRH related hormones in HPA axis (P < 0.05, 0.01). At the same time, MSZRD significantly downregulated the serum Orexin-A content in insomnia mice (P < 0.05), as well as hypothalamic OX2R expression (P < 0.05). In addition, MSZRD also improved the histopathological changes in hypothalamus in insomnia mice. CONCLUSION MSZRD has sleep-improvement effect in mice model of insomnia. The mechanism may be that regulating the expression of Orexin-A affects the homeostasis of HPA axis and the release of related neurotransmitters in mice with insomnia.
Collapse
Affiliation(s)
- Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Nanhu District, Jaxing, Zhejiang 314001, China
| | - Liang-Hui Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Xi Teng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Xi Fang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Min-Qiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Zhi-Yi Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Rong Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Lin-Zi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Bei-Bei Zhang
- Center for Food Evaluation, State Administrition for Market Regulation, No. 188 Western Road of South Fourth Ring Road, Fengtai District, Beijing 100070, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
6
|
Network Pharmacology-Based and Molecular Docking-Based Analysis of Suanzaoren Decoction for the Treatment of Parkinson's Disease with Sleep Disorder. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1752570. [PMID: 34660782 PMCID: PMC8519686 DOI: 10.1155/2021/1752570] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
This study is aimed at exploring the possible mechanism of action of the Suanzaoren decoction (SZRD) in the treatment of Parkinson's disease with sleep disorder (PDSD) based on network pharmacology and molecular docking. Traditional Chinese Medicine Systems Pharmacology (TCMSP) was used to screen the bioactive components and targets of SZRD, and their targets were standardized using the UniProt platform. The disease targets of “Parkinson's disease (PD)” and “Sleep disorder (SD)” were collected by OMIM, GeneCards, and DisGeNET databases. Thereafter, the protein-protein interaction (PPI) network was constructed using the STRING platform and visualized by Cytoscape (3.7.2) software. Then, the DAVID platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Cytoscape (3.7.2) software was also used to construct the network of the “herb-component-target-pathway.” The core active ingredients and core action targets of the drug were verified by molecular docking using AutoDock software. A total of 135 Chinese herbal components and 41 corresponding targets were predicted for the treatment of PDSD using SZRD. Fifteen important signaling pathways were screened, such as the cancer pathway, TNF signaling pathway, PI3K-AKT signaling pathway, HIF-1 signaling pathway, and Toll-like receptor signaling pathway. The results of molecular docking showed that the main active compounds could bind to the representative targets and exhibit good affinity. This study revealed that SZRD has the characteristics and advantages of “multicomponent, multitarget, and multipathway” in the treatment of PDSD; among these, the combination of the main active components of quercetin and kaempferol with the key targets of AKT1, IL6, MAPK1, TP53, and VEGFA may be one of the important mechanisms. This study provides a theoretical basis for further study of the material basis and molecular mechanism of SZRD in the treatment of PDSD.
Collapse
|