1
|
Wu M, Li A, Zhang T, Ding W, Wei Y, Wan C, Ke B, Cheng H, Jin C, Kong C. The novel prognostic analysis of AML based on ferroptosis and cuproptosis related genes. J Trace Elem Med Biol 2024; 86:127517. [PMID: 39270538 DOI: 10.1016/j.jtemb.2024.127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy. The aim of this research was to develop a ferroptosis and cuproptosis related novel prognostic signature associated with AML. METHODS The ferroptosis and cuproptosis related genes correlated with the prognosis of AML were identified by univariate Cox analysis. The consistent cluster analysis was performed for 150 AML patients in TCGA dataset. The key module genes associated with GSVA score of ferroptosis and cuproptosis were identified by WGCNA. univariate Cox and LASSO regression analysis were adopted to build a ferroptosis and cuproptosis AML prognostic signature. Finally, the expression of five prognostic genes in clinical tissue samples were verified by RT-qPCR. RESULTS A grand total of 27 FCRGs associated with AML prognosis were identified.Then, two AML sub-types with significantly different survival were obtained. We found 3 significantly differential expressed immune cells (naive CD4 cells, regulatory T cells and resting mast cells) between two risk sub-groups. Meanwhile, 'IL6 JAK STAT3 signaling' and 'P53 pathway' were enriched in low-risk group. A ferroptosis and cuproptosis related prognostic signature was build based on 8 prognostic genes. RT-qPCR results indicated that there was no significant difference in the expression of OLFML2A and CD109 between AML and normal samples. However, compared to the control group, LGALS1, SOCS1, and RHOC showed significantly lower expression in the AML group. CONCLUSION The prognostic signature comprised of OLFML2A, LGALS1, ABCB11, SOCS1, RHOC, CD109, RD3L and PTPN13 based on ferroptosis and cuproptosis was established, which provided theoretical basis for the research of AML.
Collapse
Affiliation(s)
- Mei Wu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China
| | - Anan Li
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China
| | - Tingting Zhang
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China
| | - Weirong Ding
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China
| | - Yujing Wei
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China
| | - Caishui Wan
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China
| | - Bo Ke
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China
| | - Hongbo Cheng
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China
| | - Chenghao Jin
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China
| | - Chunfang Kong
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China.
| |
Collapse
|
2
|
Wang Z, Liu T, Li Y, Li Z, Bi K. Increased Th17 and Treg levels in peripheral blood positively correlate with minimal residual disease in acute myeloid leukaemia. Hematology 2024; 29:2346971. [PMID: 38682816 DOI: 10.1080/16078454.2024.2346971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
PURPOSE Immune dysregulation plays a key role in acute myeloid leukemia (AML). We aimed to explore the correlation between T helper cell 17 (Th17) and the regulatory cells (Tregs) in the peripheral blood of patients with newly diagnosed (ND) AML and bone marrow blast cells, as well as minimal residual disease (MRD) before and after treatment. METHODS Changes in Th17 and Treg cells in the peripheral blood of 32 patients with ND AML were observed before and after induction chemotherapy with cytarabine for seven days and anthracycline for three days. The levels of inflammatory cytokines were measured using an enzyme-linked immunosorbent assay. Correlation analysis between bone marrow blast cells and Th17 and Treg cell frequencies was performed using the Pearson's correlation test. Frequencies of Th17 and Treg cells and MRD were assessed using flow cytometry. RESULTS IL-6, IL-10, IL-17A, and GM-CSF levels gradually increased in patients with ND AML and CR and NR patients. The percentages of Th17 and Treg cells positively correlated with those of blast cells. In addition, the frequencies of Th17 and Treg cells in MRD-positive patients were higher than those in MRD-negative patients at the initial induction and after three months of chemotherapy. The frequencies of Tregs and Th17 cells positively correlated with MRD onset. CONCLUSION Increased Th17 and Treg cell levels were positively correlated with onset of AML, poor remission, and MRD.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Hematology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, People's Republic of China
- Department of Hematology, Binzhou People's Hospital, Binzhou City, People's Republic of China
| | - Tangxia Liu
- Department of Hematology, Binzhou People's Hospital, Binzhou City, People's Republic of China
| | - Yanru Li
- Department of Hematology, Binzhou People's Hospital, Binzhou City, People's Republic of China
| | - Zunchang Li
- Department of Hematology, Binzhou People's Hospital, Binzhou City, People's Republic of China
| | - Kehong Bi
- Department of Hematology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, People's Republic of China
| |
Collapse
|
3
|
Kelesoglu N, Kori M, Yilmaz BK, Duru OA, Arga KY. Differential co-expression network analysis elucidated genes associated with sensitivity to farnesyltransferase inhibitor and prognosis of acute myeloid leukemia. Cancer Med 2023; 12:22420-22436. [PMID: 38069522 PMCID: PMC10757125 DOI: 10.1002/cam4.6804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/31/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease and the most common form of acute leukemia with a poor prognosis. Due to its complexity, the disease requires the identification of biomarkers for reliable prognosis. To identify potential disease genes that regulate patient prognosis, we used differential co-expression network analysis and transcriptomics data from relapsed, refractory, and previously untreated AML patients based on their response to treatment in the present study. In addition, we combined functional genomics and transcriptomics data to identify novel and therapeutically potential systems biomarkers for patients who do or do not respond to treatment. As a result, we constructed co-expression networks for response and non-response cases and identified a highly interconnected group of genes consisting of SECISBP2L, MAN1A2, PRPF31, VASP, and SNAPC1 in the response network and a group consisting of PHTF2, SLC11A2, PDLIM5, OTUB1, and KLRD1 in the non-response network, both of which showed high prognostic performance with hazard ratios of 4.12 and 3.66, respectively. Remarkably, ETS1, GATA2, AR, YBX1, and FOXP3 were found to be important transcription factors in both networks. The prognostic indicators reported here could be considered as a resource for identifying tumorigenesis and chemoresistance to farnesyltransferase inhibitor. They could help identify important research directions for the development of new prognostic and therapeutic techniques for AML.
Collapse
Affiliation(s)
| | - Medi Kori
- Department of BioengineeringMarmara UniversityIstanbulTürkiye
| | - Betul Karademir Yilmaz
- Genetic and Metabolic Diseases Research and Investigation CenterMarmara UniversityIstanbulTürkiye
- Department of Biochemistry, Faculty of MedicineMarmara UniversityIstanbulTürkiye
| | - Ozlem Ates Duru
- Department of Nutrition and Dietetics, School of Health SciencesNişantaşı UniversityIstanbulTürkiye
- Department of Chemical Engineering, Faculty of EngineeringBolu Abant İzzet Baysal UniversityBoluTürkiye
| | - Kazim Yalcin Arga
- Department of BioengineeringMarmara UniversityIstanbulTürkiye
- Genetic and Metabolic Diseases Research and Investigation CenterMarmara UniversityIstanbulTürkiye
| |
Collapse
|
4
|
A Novel Prognostic Model for Acute Myeloid Leukemia Based on Gene Set Variation Analysis. JOURNAL OF ONCOLOGY 2022; 2022:7727424. [DOI: 10.1155/2022/7727424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant hematological malignancy with a poor prognosis. Risk stratification of patients with AML is mainly based on the characteristics of cytogenetics and molecular genetics; however, patients with favorable genetics may have a poor prognosis. Here, we focused on the activity changes of immunologic and hallmark gene sets in the AML population. Based on the enrichment score of gene sets by gene set variation analysis (GSVA), we identified three AML subtypes by the nonnegative matrix factorization (NMF) algorithm in the TCGA cohort. AML patients in subgroup 1 had worse overall survival (OS) than subgroups 2 and 3 (
). The median overall survival (mOS) of subgroups 1–3 was 0.4, 2.2, and 1.7 years, respectively. Clinical characteristics, including age and FAB classification, were significantly different among each subgroup. Using the least absolute shrinkage and selection operator (LASSO) regression method, we discovered three prognostic gene sets and established the final prognostic model based on them. Patients in the high-risk group had significantly shorter OS than those in the low-risk group in the TCGA cohort (
) with mOS of 2.2 and 0.7 years in the low- and high-risk groups, respectively. The results were further validated in the GSE146173 and GSE12417 cohorts. We further identified the key genes of prognostic gene sets using a protein-protein interaction network. In conclusion, the study established and validated a novel prognostic model for risk stratification in AML, which provides a new perspective for accurate prognosis assessment.
Collapse
|
5
|
Zhang S, Wang Q, Xia H, Liu H. A Novel Prognostic Model for Acute Myeloid Leukemia Based on Gene Set Variation Analysis. JOURNAL OF ONCOLOGY 2022; 2022:1-13. [DOI: g/10.1155/2022/7727424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant hematological malignancy with a poor prognosis. Risk stratification of patients with AML is mainly based on the characteristics of cytogenetics and molecular genetics; however, patients with favorable genetics may have a poor prognosis. Here, we focused on the activity changes of immunologic and hallmark gene sets in the AML population. Based on the enrichment score of gene sets by gene set variation analysis (GSVA), we identified three AML subtypes by the nonnegative matrix factorization (NMF) algorithm in the TCGA cohort. AML patients in subgroup 1 had worse overall survival (OS) than subgroups 2 and 3 (
). The median overall survival (mOS) of subgroups 1–3 was 0.4, 2.2, and 1.7 years, respectively. Clinical characteristics, including age and FAB classification, were significantly different among each subgroup. Using the least absolute shrinkage and selection operator (LASSO) regression method, we discovered three prognostic gene sets and established the final prognostic model based on them. Patients in the high-risk group had significantly shorter OS than those in the low-risk group in the TCGA cohort (
) with mOS of 2.2 and 0.7 years in the low- and high-risk groups, respectively. The results were further validated in the GSE146173 and GSE12417 cohorts. We further identified the key genes of prognostic gene sets using a protein-protein interaction network. In conclusion, the study established and validated a novel prognostic model for risk stratification in AML, which provides a new perspective for accurate prognosis assessment.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Bejing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianqian Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Bejing, China
| | - Haoran Xia
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Bejing, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Bejing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol 2022; 13:1000996. [PMID: 36248849 PMCID: PMC9554002 DOI: 10.3389/fimmu.2022.1000996] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy of the blood and bone marrow, characterized by clonal expansion of myeloid stem and progenitor cells and rapid disease progression. Chemotherapy has been the first-line treatment for AML for more than 30 years. Application of recent high-throughput next-generation sequencing technologies has revealed significant molecular heterogeneity to AML, which in turn has motivated efforts to develop new, targeted therapies. However, due to the high complexity of this disease, including multiple driver mutations and the coexistence of multiple competing tumorigenic clones, the successful incorporation of these new agents into clinical practice remains challenging. These continuing difficulties call for the identification of innovative therapeutic approaches that are effective for a larger cohort of AML patients. Recent studies suggest that chronic immune stimulation and aberrant cytokine signaling act as triggers for AML initiation and progression, facets of the disease which might be exploited as promising targets in AML treatment. However, despite the greater appreciation of cytokine profiles in AML, the exact functions of cytokines in AML pathogenesis are not fully understood. Therefore, unravelling the molecular basis of the complex cytokine networks in AML is a prerequisite to develop new therapeutic alternatives based on targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Michela Luciano
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
7
|
Wu X, Li S, Chen D, Zheng G, Zhang Z, Li Z, Sun X, Zhao Q, Xu J. An inflammatory response-related gene signature associated with immune status and prognosis of acute myeloid leukemia. Am J Transl Res 2022; 14:4898-4917. [PMID: 35958446 PMCID: PMC9360836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine the prognostic significance of inflammatory response-associated genes in acute myeloid leukemia (AML). METHODS Transcriptomic profiles and related clinical information of AML patients were acquired from a public database. To establish a multi-gene prognosis signature, we performed least absolute shrinkage and selection operator Cox analysis for the TCGA cohort and evaluated the ICGC cohort for verification. Subsequently, Kaplan-Meier analysis was carried out to compare the overall survival (OS) rates between high- and low-risk groups. Biological function and single-sample gene set enrichment (ssGSEA) analyses were employed to investigate the association of risk score with immune status and the tumor microenvironment. Prognostic gene expression levels in AML samples and normal controls were confirmed by qRT-PCR and immunofluorescence. RESULTS We identified a potential inflammatory response-related signature comprising 11 differentially expressed genes, including ACVR2A, CCL22, EBI3, EDN1, FFAR2, HRH1, ICOSLG, IL-10, INHBA, ITGB3, and LAMP3, and found that AML patients with high expression levels in the high-risk group had poor OS rates. Biological function analyses revealed that prognostic genes mainly participated in inflammation and immunity signaling pathways. Analyses of cancer-infiltrating immunocytes indicated that in high-risk patients, the immune suppressive microenvironment was significantly affected. The expression of the inflammation reaction-associated signature was found to be associated with susceptibility to chemotherapy. There was a significant difference in prognostic gene expression between AML and control tissues. CONCLUSION A novel inflammatory response-related signature was developed with 11 candidate genes to predict prognosis and immune status in AML patients.
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Shiqin Li
- Department of Cell Biology, School of Life Sciences, Central South UniversityChangsha 410013, Hunan, China
| | - Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Guiping Zheng
- Department of Hematology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Zhaohua Zhang
- Department of Hematology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Xiaoying Sun
- Department of Emergency, The Qinghai Provincial People’s HospitalXining 810007, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Jingjuan Xu
- Department of Outpatient, The First People’s Hospital of ChangzhouChangzhou 213000, Jiangsu, China
| |
Collapse
|
8
|
Yang J, Lu F, Ma G, Pang Y, Zhao Y, Sun T, Ma D, Ye J, Ji C. Role of CDH23 as a prognostic biomarker and its relationship with immune infiltration in acute myeloid leukemia. BMC Cancer 2022; 22:568. [PMID: 35597916 PMCID: PMC9123811 DOI: 10.1186/s12885-022-09532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cadherin-23 (CDH23) plays an important role in intercellular adhesion and is involved in the progression of several types of cancer. However, the biological functions and effect of CDH23 expression on the prognosis of patients with acute myeloid leukemia (AML) are unexplored. Herein, we aim to characterize the role and molecular functions of CDH23 in AML. Methods We downloaded the transcriptomic profiles and clinical data from the Cancer Genome Atlas and Beat AML trial. The expression level of CDH23 was assessed using Gene Expression Profiling Interactive Analysis (GEPIA). Kaplan-Meier survival analysis was used to assess prognostic value of CDH23. Correlation and biological function analyses were performed using LinkedOmics and GeneMANIA. Relationship of CDH23 with immune infiltration level was determined using Tumor Immune Estimation Resource (TIMER). Results We found that the CDH23 expression was aberrantly upregulated in patients with AML and could be used as an independent risk factor of overall survival using Cox multivariate analysis. Notably, we observed a negative correlation between CDH23 expression and immune cell infiltration abundance by calculating the immune and stromal scores. In addition, functional enrichment analysis established that CDH23 plays a crucial role in tumor immunity. Conclusions Our findings indicate that upregulated CDH23 expression corresponds to decreased overall survival of patients with AML. CDH23 may be involved in mediating tumor immune environment, and this highlights the potential of CDH23 as a therapeutic target in AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09532-1.
Collapse
Affiliation(s)
- Jiao Yang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yihua Pang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanan Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Flores-Borja F, Blair P. "Mechanisms of induction of regulatory B cells in the tumour microenvironment and their contribution to immunosuppression and pro-tumour responses". Clin Exp Immunol 2022; 209:33-45. [PMID: 35350071 PMCID: PMC9307227 DOI: 10.1093/cei/uxac029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of tumour-infiltrating immune cells was originally associated with the induction of anti-tumour responses and good a prognosis. A more refined characterization of the tumour microenvironment has challenged this original idea and evidence now exists pointing to a critical role for immune cells in the modulation of anti-tumour responses and the induction of a tolerant pro-tumour environment. The coordinated action of diverse immunosuppressive populations, both innate and adaptive, shapes a variety of pro-tumour responses leading to tumour progression and metastasis. Regulatory B cells have emerged as critical modulators and suppressors of anti-tumour responses. As reported in autoimmunity and infection studies, Bregs are a heterogeneous population with diverse phenotypes and different mechanisms of action. Here we review recent studies on Bregs from animal models and patients, covering a variety of types of cancer. We describe the heterogeneity of Bregs, the cellular interactions they make with other immune cells and the tumour itself, and their mechanism of suppression that enables tumour escape. We also discuss the potential therapeutic tools that may inhibit Bregs function and promote anti-tumour responses.
Collapse
Affiliation(s)
- Fabian Flores-Borja
- Centre for Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Blizard Institute, London
| | - Paul Blair
- Division of Infection & Immunity, Faculty of Medical Sciences, Department of Infection, Immunity, and Transplantation, University College London, London
| |
Collapse
|
10
|
Changes of Cell Adhesion Molecules and T Cell Subset Populations in Acute Myeloid Leukemia Patients Undergoing Intravenous Administration of Cytarabine Supplemented with Idarubicin. J CHEM-NY 2022. [DOI: 10.1155/2022/5507328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective. The present study aimed at investigating the efficacy and safety of intravenous administration of cytarabine supplemented with idarubicin in treating acute myeloid leukemia (AML) patients undergoing first attack and its effects on serum levels of cell adhesion molecules, cytokines in response to inflammation, and T cell subset populations in acute myeloid leukemia (AML) patients undergoing first attack. Methods. A total of 88 AML patients eligible for inclusion and exclusion criteria participated in the study and were randomly assigned into the control group (n = 44) in which the patients received intravenous administration of cytarabine and daunorubicin and the study group (n = 44) in which the patients received intravenous administration of cytarabine and idarubicin. Clinical response, incidence of adverse reactions, and quality of life 3 months after therapy were evaluated. Soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), IL-10, and IL-35 were measured by ELISA methods. Phenotypic characteristics of T cell subsets including CD4+, CD8+, CD4+IL-10 Tregs, and CD4+CD25+CD127−Foxp3+ Tregs were analyzed by flow cytometry. Results. The clinical response rate of the study group was better than that of the control group (65.91% vs. 45.45%) (
). After treatment, the study group revealed significantly lower levels of sICAM-1, sVCAM-1, IL-10, and IL-35, a lower proportion of Tregs, a higher rate of CD4+/CD8+ T cells, along with increased scores of the Karnofsky Performance Scale (KPS) compared with the control group (
). The incidence rate of adverse reactions in the study group was lower than that in the control group (34.09% vs. 61.36%) (
). Conclusion. These findings demonstrate that intravenous administration of cytarabine supplemented with idarubicin can improve the immune function and quality of life of AML patients, and this combination drug therapy is effective and safe for AML.
Collapse
|
11
|
Jimbu L, Mesaros O, Neaga A, Nanut AM, Tomuleasa C, Dima D, Bocsan C, Zdrenghea M. The Potential Advantage of Targeting Both PD-L1/PD-L2/PD-1 and IL-10-IL-10R Pathways in Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2021; 14:1105. [PMID: 34832887 PMCID: PMC8620891 DOI: 10.3390/ph14111105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Tumor cells promote the suppression of host anti-tumor type 1 T cell responses by various mechanisms, including the upregulation of surface inhibitory molecules such as programmed death ligand (PD-L)-1, and the production of immunosuppressive cytokines such as interleukin-10 (IL-10). There are over 2000 trials investigating PD-L1 and/or its receptor programmed-death 1 (PD-1) blockade in cancer, leading to the approval of PD-1 or PD-L1 inhibitors in several types of solid cancers and in hematological malignancies. The available data suggest that the molecule PD-L1 on antigen-presenting cells suppresses type 1 T cell immune responses such as cytotoxicity, and that the cytokine IL-10, in addition to downregulating immune responses, increases the expression of inhibitory molecule PD-L1. We hypothesize that the manipulation of both the co-inhibitory network (with anti-PD-L1 blocking antibodies) and suppressor network (with anti-IL-10 blocking antibodies) is an attractive immunotherapeutic intervention for acute myeloid leukemia (AML) patients ineligible for standard treatment with chemotherapy and hematopoietic stem cell transplantation, and with less severe adverse reactions. The proposed combination of these two immunotherapies represents a new approach that can be readily translated into the clinic to improve the therapeutic efficacy of AML disease treatment.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 19-21 Croitorilor Str., 400162 Cluj-Napoca, Romania
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
| | - Ana Maria Nanut
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| | - Corina Bocsan
- Department of Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania;
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Quercetin potentiates the chemosensitivity of MCF-7 breast cancer cells to 5-fluorouracil. Mol Biol Rep 2021; 48:7733-7742. [PMID: 34637097 DOI: 10.1007/s11033-021-06782-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Breast cancer is one of the leading causes of cancer mortality worldwide. 5-fluorouracil (5-FU) is one of the chemotherapy drugs to treat breast cancer, but it is associated with several side effects. Combination therapy is a way to increase the effectiveness of chemo drugs and decrease their usage dose. Quercetin (Quer) is one of the natural polyphenols with anti-cancer properties. This study investigated the apoptotic effect of 5-FU in combination with Quer compared with 5-FU alone on MCF-7 breast cancer cells. METHOD AND RESULTS Different single and combined concentrations of 5-FU and Quer were applied to MCF 7 cells for 48 h. Cell viability, apoptosis, gene expression of Bax, Bcl2, and p53, caspase activity, and colony number were assessed using MTT assay, flow cytometry, quantitative real-time PCR, enzyme-linked immunosorbent (ELISA), and Colony formation assay, respectively. The combination of 5-FU and Quer compared to 5-FU alone improved apoptosis by increasing the gene expression of Bax and p53 and caspase-9 activity and decreasing the Bcl2 gene expression. Colony formation in MCF-7 cells significantly decreased in the combined state compared to 5-FU alone. CONCLUSION Quer potentiates the sensitivity of breast cancer to 5-FU so that this combination may be proposed as a treatment for breast cancer. Therefore, this combination can be suggested for future in vivo studies.
Collapse
|
13
|
Swatler J, Turos-Korgul L, Kozlowska E, Piwocka K. Immunosuppressive Cell Subsets and Factors in Myeloid Leukemias. Cancers (Basel) 2021; 13:cancers13061203. [PMID: 33801964 PMCID: PMC7998753 DOI: 10.3390/cancers13061203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Effector immune system cells have the ability to kill tumor cells. However, as a cancer (such as leukemia) develops, it inhibits and evades the effector immune response. Such a state of immunosuppression can be driven by several factors – receptors, soluble cytokines, as well as by suppressive immune cells. In this review, we describe factors and cells that constitute immunosuppressive microenvironment of myeloid leukemias. We characterize factors of direct leukemic origin, such as inhibitory receptors, enzymes and extracellular vesicles. Furthermore, we describe suppressive immune cells, such as myeloid derived suppressor cells and regulatory T cells. Finally, we sum up changes in these drivers of immune evasion in myeloid leukemias during therapy. Abstract Both chronic myeloid leukemia and acute myeloid leukemia evade the immune response during their development and disease progression. As myeloid leukemia cells modify their bone marrow microenvironment, they lead to dysfunction of cytotoxic cells, such as CD8+ T cells or NK cells, simultaneously promoting development of immunosuppressive regulatory T cells and suppressive myeloid cells. This facilitates disease progression, spreading of leukemic blasts outside the bone marrow niche and therapy resistance. The following review focuses on main immunosuppressive features of myeloid leukemias. Firstly, factors derived directly from leukemic cells – inhibitory receptors, soluble factors and extracellular vesicles, are described. Further, we outline function, properties and origin of main immunosuppressive cells - regulatory T cells, myeloid derived suppressor cells and macrophages. Finally, we analyze interplay between recovery of effector immunity and therapeutic modalities, such as tyrosine kinase inhibitors and chemotherapy.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
| | - Laura Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
| | - Ewa Kozlowska
- Department of Immunology, Institute of Functional Biology and Ecology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
- Correspondence:
| |
Collapse
|